
Math 5346 Rahman Week 10

Nonhomogeneous head conduction (continued)

This problem is a bit harder and won’t come up on any exam, but I keep it here for the interested reader.

ut = kuxx − hu; u(0, t) = 0, u(π, t) = u0; u(x, 0) = 0. (1)

Solution: To get the equilibrium solution we solve
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The first boundary gives us u∗(0)C1 = 0 and the second gives us
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Letting v(x, t) = u(x, t)− u∗(x) gives us

vt = kvxx − hv; v(0, t) = v(π, t) = 0; v(x, 0) = −u0
sinh
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Heat in nonuniform media

Consider the 1-D problem

ρ(x)c(x)
∂u

∂t
=

∂

∂x

(
K(x)

∂u

∂x

)
+Q(x, t). (3)

To simplify the problem slightly, let Q(x, t) = αu(x, t).
There is no guarantee that separation of variables will work, but lets try it and see what we get. Let

u(x, t) = X(x)T (t). Then
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where µ is the eigenvalue of the problem. Solving for T gives us the usual T = e−µt. Our X equation
becomes

d

dx
(KX ′) + (α+ µcρ)X = 0. (4)

This is called a Sturm–Liouville Eigenvalue Problem, which takes the general form
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)
+ qy + λσy = 0. (5)

It is reasonable to assume that y can be expressed as a Fourier-like series. What will change are the
coefficients and eigenfunctions. Notice that with the simple heat problem the general solution has linearly
independent solutions in the form of sine and cosine. Here we let φn represent general linearly independent
solutions to the general Sturm–Liouville problem.

Consider (5) with solutions φn. Notice that since they are linearly independent they must satisfy the
Wronskian being zero ∣∣∣∣φi(a;λ) φj(a;λ)

φi(b;λ) φj(b;λ)

∣∣∣∣ = 0. (6)
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Since φi and φj are linearly independent solutions,

d

dx
(Kφ′i) + (q + λiσ)φi = 0, and

d

dx
(Kφ′j) + (q + λjσ)φj = 0.

Multiplying the first by φj and the second by φi and then subtracting gives us

φj
d

dx
(Kφ′i)− φi

d

dx
(Kφ′j) + (λi − λj)σφiφj = 0.

We can integrate the first two expressions over the domain [a, b] by parts to get
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which means
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ˆ b
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σφiφjdx = 0. (7)

So, if λi 6= λj , ˆ b

a

σφiφjdx = 0, (8)

which makes that integral an orthogonality condition. We can use this orthogonality in the same way as we
did that of Fourier series, so
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σ(x)φnf(x)dx. (9)

6.1 Basic simplifications and its shortcomings

Now lets shift gears and look at how to simplify equations, which can be very useful when working with
complex equations. Lets see what happens if we remove small terms and check for consistency.

Ex: Consider x+ 10y = 21 and 5x+ y = 7. Suppose that we decide x is small compared to 10y and 21.
If we remove x from the first equation, we get y ∼ 2.1, then x ∼ (7− 2.1)/5 ∼ 0.98. Notice that the
actual solution is x = 1 and y = 2, so this approximation is not far off.

Ex: Consider the ODE for a projectile,

x′′ = − gR2

(x+R)2
; x(0) = 0, x′(0) = v, (10)

where R is the radius of the Earth, x is the radial distance of the projectile from the ground, g
is acceleration due to gravity at the surface, and v is the initial velocity. If v � 1, x � R; i.e.,
(x+R)2 ∼ R2. Then our simplified equation becomes

x′′ = −g;x(0) = 0, x′(0) = v ⇒ x = −1

2
gt2 + vt⇒ x′ = −gt+ v. (11)

Notice that if x′ = 0, t = v/g, which gives us the maximum height of xmax = v2/2g. Then
max(x/R) = v2/2gR. Observe that x � R implies max(x/R) � 1, so if v2 � gR this solution is
consistent.

Ex: Consider 0.01x + y = 0.1 and x + 101y = 11. If we assume 0.01x is much smaller than y, then
y ∼ 0.1 and x ∼ 11 − 101 · 0.1 = 99. However, the actual solutions are y = 1 and x = −90, so
this approximation is off by a factor of 10 for y and 100 for x, and a minus sign. Obviously, this
approximation is not consistent.



6.2 Dimensional analysis

Nondimensionalization. Consider the projectile problem again,

ẍ = − gR2

(x+R)2
; x(0) = 0, ẋ(0) = v. (12)

Lets first try x̂ = x/R and τ = t/T . Our derivatives are
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This gives us the ODE
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Since R/v is in units of time, a natural guess for T would be T = R/v. Then we get R/gT 2 = v2/gR = ε� 1
if R� v2/g. However this would give us εx̂′′, which means to leading order we would be getting rid of the
most important term (the higher the order of the derivative the more important the term).

Recall from last time we had that another guess for T is T =
√
R/g. Then
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R
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if R� v2/g. However, this won’t work either since this means x̂′(0) = 0 to leading order.
So, it’s not the choice of T that’s a problem, but rather the choice of x̂. Recall from last time that the

maximum height the projectile can reach, xmax = v2/2g is much less than the radius of the Earth. So, lets
scale by that.

Let x̂ = (g/v2)x and τ = t/T . Then
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v2T
ẋ and x̂′′ =
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v2T 2
ẍ.

Our ODE becomes
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We would like x̂′′ to remain so we let T = g/v and ε = v2/gR, then the full nondimensionalized ODE is

ẍ = − 1

(1 + εx)2
; x(0) = 0, ẋ(0) = 1. (14)
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