
Math 5346 Rahman Week 2

Basics of Dynamical Systems (continued)

Consider further an animal that eats the plants at a 1:1 rate is introduced into the system. Suppose that
the birth rate of the animal is equivalent to the population size of the plants, and the death rate is equivalent
to its own population size. Further, assume the animal’s feces acts like a fertilizer, effectively doubling the
plant’s population growth rate. We can model this as follows,

ẋ = 2x− x2 − y, ẏ = x− y. (1)

To find the fixed points we let ẋ = 0 and ẏ = 0,

ẋ = 0⇒ y = 2x− x2

and

ẏ = 0⇒ y = x⇒ x2 − x = x(x− 1) = 0,

then the fixed points are (x∗, y∗) = (0, 0), (1, 1).
You may have noticed that letting ẋ = 0 and ẏ = 0, produced two lines: y = 2x − x2 and y = x. These

are called nullclines. These are lines where there is no motion in the x-direction for ẋ = 0 and no motion
in the y-direction for ẏ = 0. Sometimes it is useful to plot these lines, and sometimes they are completely
useless. Whether we need them will depend on the application.

Now we compute the Jacobian in order to find the eigenvalues and eigenvectors for the respective fixed
points. The general Jacobian for this system is
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Then we have
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Then we compute the eigenvalues

|J(0, 0)− λI| =
∣∣∣∣2− 2λ −1

1 −1− λ

∣∣∣∣ = λ2 − λ− 1 = 0⇒ λ =
1

2
±
√

5

2
(4)

and
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So, (0, 0) is a saddle and (1, 1) is a stable spiral.
Then the respective eigenvectors are(
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Sec. 11.3 The Simple Pendulum Phase Plane

Sometimes we just can’t solve problems exactly. In fact most
problems don’t have exact solutions. These equations are either
solved numerically, in which case the numerics might get it wrong,
or we extract information form the equations without solving.

Consider the pendulum. We will consider both the frictional and
frictionless case. For the exam just to keep things simple we
will just focus on the frictionless case, but it is important to
understand what happens in the frictional case as well.

In order to derive the ODE we need the force along its arc. Then
we use Newton’s law: F = ma. To find the acceleration a along
the arc lets consider the arc length: s = Lθ, then the velocity is

v = Ldθdt = θ̇, and the acceleration is a = Ld
2θ
dt2 = θ̈, which gives

us a force of F = mθ̈. Now we need to figure out what F is. This
consists of the force from gravitational acceleration and damping
from friction, F = −νLθ̇ −mg sin θ. This gives us the ODE

mL
d2θ

dt2
= −νLdθ

dt
−mg sin θ ⇒ d2θ

dt2
+
ν

m

dθ
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+
g

L
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But this is really ugly, so lets simplify the equation a bit,

θ̈ = −γθ̇ − k sin θ (8)

Higher order equations are tough to deal with, especially when they are nonlinear, so lets change this into a
system of first order equations by letting ω = θ̇

θ̇ = ω

ω̇ = −γω − k sin θ

We can’t change this into a matrix equation because it is nonlinear. However, we can use similar techniques
after linearizing about special solutions called fixed points (f.p.’s) (θ∗, ω∗), which are points for which the

object isn’t moving; i.e. ω̇ = 0 and θ̇ = 0. This means we set the right hand side (RHS) to zero

θ̇∗ = 0⇒ ω∗ = 0⇒ ω̇∗ = −γ��>
0

ω∗ − k sin θ∗ = 0⇒ θ∗ = nπ; n ∈ Z⇒ (θ∗, ω∗) = (nπ, 0)

Now we can linearlize about these fixed points. In order to do this we will use the Jacobian also known as
the derivative matrix in 2-D.

J(θ∗, ω∗) =
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(9)

For our case this will be

J(nπ, 0) =

(
0 1

−k cos θ −γ

)
(nπ,0)

=

(
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)
for n even and odd, respectively. (10)

Intuitively we know that we are going to get different solutions for the frictional and frictionless case.
Lets first do the frictionless case.

Frictionless Case (γ = 0). Here the fixed points are the same, but now our Jacobian is going to be slightly
different

J(nπ, 0) =
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)
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=
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)
for n even and odd, respectively. (11)

Then we look for the eigenvalues for our two fixed point cases.
n even. When n is even we have∣∣∣∣−λ 1
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This is what’s called a center fixed point, and this admits oscillatory solutions since we have complex
conjugate eigenvalues without a real part; i.e. pure sines and cosines.

n odd. When n is odd we have ∣∣∣∣−λ 1
k −λ

∣∣∣∣ = 0⇒ λ2 = k ⇒ λ = ±
√
k (13)

This is called a saddle fixed point, and this admits exponentially decaying solutions in one direction and
exponentially expanding solutions in the other direction.

Now we can sketch what’s called a phase portrait also called a phase plane diagram. This is a vector
field in (θ, ω) space. This is a way we can visualize how the position and velocity of solutions are related.
The phase portrait for the frictionless pendulum is going to look as such When two saddle fixed points are

connected it is called a heteroclinic orbit. And if a saddle is connected to itself it’s called a homoclinic orbit.
Attached to the email are videos of the different solutions about the center fixed point getting closer to the
heteroclinic orbit. The video doesn’t, however, show the heteroclinic solution because it takes infinitely long
to go from one saddle point to the other. It also doesn’t show the solutions away from the heteroclinic orbit,
which correspond to a pendulum with so much initial energy that it just moves around in circles forever.

Next time I will show the frictional case.
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