
Math 5346 Rahman Week 4

Phase Planes (continued)

Frictional Case (γ > 0). Now lets look at the frictional case. For this case I won’t sketch the full phase
portrait. I will just show the local vector field around the fixed point just so I can define the various types
of stability. From (??) we have two cases of n. Lets first look at the odd n’s

n odd. When n is odd we have∣∣∣∣−λ 1
k −γ − λ

∣∣∣∣ = λ2 + γλ− k = 0⇒ λ =
1

2

(
−γ ±

√
γ2 + 4k

)
. (1)

Notice that the discriminant here is always positive, also
√
γ2 + 4k > γ, which means for +

√
γ2 + 4k it is

exponentially expanding and for −
√
γ2 + 4k it is exponentially decaying. So the fixed point when n is odd

is a saddle fixed point. We already know the sketch of a saddle so I won’t sketch it here.
n even. When n is even we have∣∣∣∣−λ 1

−k −γ − λ

∣∣∣∣ = λ2 + γλ+ k = 0⇒ λ =
1

2

(
−γ ±

√
γ2 − 4k

)
. (2)

Notice that this has two cases. Either the discriminant is negative or positive.
γ2 − 4k < 0. For this case we get complex conjugate eigen-

values, but notice that the real part is negative. This means
we will get decaying oscillatory solutions, and the fixed point
is called a stable spiral.
γ2 − 4k > 0. For this case we get negative real solutions

since
√
γ2 − 4k < γ. This means we get decaying solutions,

and the fixed point is called a stable node.

Forced Case (γ < 0). There is one more case. What if γ is
negative. Then this isn’t damped anymore, it’s actually forced.
We still have the even and odd cases, but now the real part will
always be positive.

n odd. When n is odd we have a saddle fixed point again since we have both positive and negative real

eigenvalues because
√
γ2 + 4k > γ, so for +

√
γ2 + 4k it is exponentially expanding and for −

√
γ2 + 4k it

is exponentially decaying.
n even. When n is even we have the same positive or negative discriminant, except now we have positive

real parts.
γ2 − 4k < 0. For this case we get complex conjugate eigen-

values, but notice that the real part is positive. This means we
will get expanding oscillatory solutions, and the fixed point is
called an unstable spiral.
γ2 − 4k > 0. For this case we get positive real solutions

since
√
γ2 − 4k < γ. This means we get expanding solutions,

and the fixed point is called an unstable node.

Summary. We can summarize all of this in this table. There
are other cases called borderline cases, but lets not worry about
that for this class.

And here is another picture of the the types of fixed points when they don’t line up perfectly with the
axes:

Additional Examples.

Ex: Lets do a couple of really simple example that you will definitely not see on the exam just to solidify
some concepts. These concepts in 1-D will expand to 2-D, but in 1-D we only have three cases,
whereas in 2-D we have six main cases and three borderline cases. In this class we won’t go over
borderline cases.
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Case Eigenvalue Description
Stable Node λ1,2 < 0 Exponential Decay

Unstable Node λ1,2 > 0 Exponential Expansion
Stable Spiral λ1,2 = ξ ± iθ where ξ < 0 Oscillatory Decay

Unstable Spiral λ1,2 = ξ ± iθ where ξ > 0 Oscillatory Expansion
Center λ1,2 = ±iθ Pure Oscillations
Saddle λ1 < 0 and λ2 > 0 Exponential Decay in one direction

and Exponential Expansion in the other

(a) Consider dx
dt = ẋ = f(x) = −x. Clearly the fixed point is x = 0, but is it stable or unstable?

Well, if x > 0 the ODE will pull it back to zero, and if x < 0 it will also go back to zero. So this
fixed point is stable. Another way we can show this is by taking the derivative, f ′(x∗ = 0) =
−1 < 0.

(b) Now consider dx
dt = ẋ = f(x) = x. The fixed point is x = 0 again, but now it’s stable since a

point starting off the fixed point will want to go away from it. Also, f ′(x∗ = 0) = 1 > 0.
(c) We can also have something that is bi-stable. Consider dx

dt = ẋ = f(x) = x2. Then for x > 0
the trajectory diverges from zero, but for x < 0 the trajectory goes towards zero. We’ll notice
that f ′(x∗ = 0) = 0, so linear stability analysis fails here; i.e. the derivative test is not enough
to tell us anything about stability. Notice that dx

dt = ẋ = f(x) = x3, also has a fixed point at
zero with a zero derivative, but this is stable.



Ex: Now lets look at a 2-D example with linear equations. Fun fact: this is a model for love affairs
written by Strogatz 1988.

ẋ = ax+ by

ẏ = bx+ ay
; a < 0, b > 0 (3)

Lets first find the fixed points: ax∗+by∗ = 0; cx∗+dy∗ = 0⇒ x∗ = y∗ = 0. You can convince yourself
of this by either Gaussian elimination or simultaneous equations. Then we find the eigenvalues

J(x∗, y∗) =

∣∣∣∣a b
b a

∣∣∣∣⇒ ∣∣∣∣a− λ b
b a− λ

∣∣∣∣ = λ2 − 2aλ+ a2 − b2 = 0⇒ λ =
1

2

(
2a±

√
4a2 − 4a2 + 4b2

)
= a± b.

Since a < 0 and b > 0 we have two cases: |a| > |b|: λ1,2 < 0 and |a| < |b|: λ1 = a − b < 0,
λ2 = b − a > 0. These two cases are illustrated in the figures below (left). Now, we could use
eigenvectors to get the precises direction of the trajectories, but these problems are simple enough
that we can forgo using eigenvectors and just think of the vector field near the fixed point.

Ex: Lets look at a simpler version of the above equation

ẋ = ay

ẏ = −bx; a, b > 0 (4)

Clearly the fixed point is (x∗, y∗) = (0, 0). For the eigenvalues we have

J(x∗, y∗) =

∣∣∣∣ 0 a
−b 0

∣∣∣∣⇒ ∣∣∣∣−λ a
−b −λ

∣∣∣∣ = λ2 + ab = 0⇒ λ = ±i
√
ab.

So this fixed point is a center with the phase portrait on the right.
Ex: Here is a concrete example somewhat similar to the one on the exam, except this problem is actually

more difficult than the one that will be on the exam. The problem is exactly the way it will look on
the exam except with a different ODE, so hope it helps.

Consider the ODE

ẋ = y

ẏ = x− x3
(5)

(a) Find all fixed points.
Solution: ẋ∗ = 0⇒ y∗ = 0 and ẏ∗ = 0⇒ x∗ − x3∗ = x∗(1− x2∗) = x∗(1− x∗)(1 + x∗) = 0⇒
x∗ = 0,±1, so the three fixed points are (x∗, y∗) = (0, 0), (−1, 0), (1, 0).

(b) Linearize about the fixed points.
Solution: First we compute the Jacobian,

J(x∗, y∗) =

(
0 1

1− 3x2∗ 0

)
⇒ J(0, 0) =

(
0 1
1 0

)
; J(±1, 0) =

(
0 1
−2 0

)



(c) Find the eigenvalues of the linearized system.
Solution: For (x∗, y∗) = (0, 0) we have∣∣∣∣−λ 1

1 −λ

∣∣∣∣ = λ2 − 1 = 0⇒ λ = ±1

And for (x∗, y∗) = (±1, 0) we get∣∣∣∣−λ 1
−2 −λ

∣∣∣∣ = λ2 + 2 = 0⇒ λ = ±i
√

2

(d) State the stability of each fixed point.
Solution: (x∗, y∗) = (0, 0) is a saddle fixed point since λ1 = −1 < 0 and λ2 = 1 > 0.
(x∗, y∗) = (±1, 0) are centers since λ is a complex conjugate with zero real part.

(e) Sketch the phase portrait.
Solution: This has a homoclinic orbit unlike in the pendulum that had a heteroclinic orbit,
because there is only one saddle point and the trajectory comes out of the saddle point back
into the saddle point. The figure is below:

Sec. 2.2 Perturbation Theory

We can solve
dy

dx
= 1 + (1 + ε)y2; y(0) = 0 (6)

exactly via separation,

dy

1 + (1 + ε)y2
= dx⇒ 1√

1 + ε
tan−1(

√
1 + εy) = x+ C.

Invoking the initial condition gives us C = 0, then

y =
tan(x

√
1 + ε)√

1 + ε
. (7)

Taking the Taylor series of this gives us

y = tanx+ ε

(
1

2
x sec2 x− 1

2
tanx

)
+ · · · (8)

What if we couldn’t find an exact solution though? Notice that the Taylor series of the exact solution
above is of the form y = ε0y0 + ε1y1 + · · · . Perhaps we can assume a solution of this form and test it for the
problem that we already solved to verify that this method works.



Let
y = ε0y0 + ε1y1 + ε2y2 + · · · (9)

Substituting this into (??) give us

ε0y′0 + ε1y′1 + ε2y′2 + · · · = 1 + (1 + ε)(ε0y0 + ε1y1 + ε2y2 + · · · )2. (10)

Now we need to separate this equation into its respective orders of ε; i.e., lets group terms that are of the
same order of ε.

o(ε0): y′0 = 1 + y20 ; y0(0) = 0⇒ y0 = tanx.
o(ε1): y′1 = y20 + 2y0y1 = tan2 x+ (2 tanx)y1; y1(0) = 0.

Another way we can write this is y′1 − (2 tanx)y1 = tan2 x. For an ODE of this form we use
integrating factors. Here the integrating factor is

µ = exp

(∫ x

−2 tan ξdξ

)
= exp (2 ln cosx) = cos2 x.

This gives us

d((cos2 x)y1) = cos2 x tan2 xdx⇒ (cos2 x)y1 =

∫
sin2 xdx =

1

2
(x− sinx cosx) + C.

Invoking the initial condition once again gives us C = 0. Then

y1 =
1

2

(
x sec2 x− tanx

)
(11)

which is precisely the second term in the Taylor series of the exact solution (??).

Next time we apply this to the Pendulum.


