
Math 5346 Rahman Week 8

Laplace’s method

We did perturbation methods for ODEs, however they are not the only types of asymptotic expansions.
Consider the integral

f(x) =

∫ ∞
x

t−1ex−tdt; x� 1. (1)

We solve this via by-parts: u = t−1 ⇒ du = −t−2, and dv = ex−tdt⇒ v = −ex−t,

f(x) = −1

t
ex−t

∣∣∣∣∞
x

−
∫ ∞
x

t−2ex−tdt =
1

x
−
∫ ∞
x

t−2ex−tdt.

If we keep doing by-parts we get

f(x) =
1

x
− 1

x2
+

2

x3
− · · ·+ (−1)n−1

(n− 1)!

xn
+Rn(x); Rn(x) = (−1)nn!

∫ ∞
x

t−(n+1)ex−tdt. (2)

Notice that Sn(x) = f(x) − Rn(x) diverges as n → ∞ for all x ∈ R. This is because factorials grow faster
than exponentials.

However, intuitively as x → ∞ it seems like the approximation won’t be too bad since it competes with
n! From analysis we know ∣∣∣∣ ∫ ∞

x

t−(n+1)ex−tdt

∣∣∣∣ ≤ ∫ ∞
x

∣∣t−(n+1)
∣∣∣∣ex−t∣∣dt.

Since t ≥ x, ∣∣t−(n+1)
∣∣ ≤ x−(n+1) ⇒ |Rn(x)| < n!x−(n+1)

∫ ∞
x

ex−tdt = n!x−(n+1).

So, as x→∞, Rn(x)→ 0 for fixed n, and even for small n such as n = 3, Rn < 1/144 ≈ 0.007 for x ≥ 6.
This is markedly different from Taylor series, which converges as n→∞. This shows us that convergence

is not always necessary for a useful series.

Definition 1. Consider the series

A0 +
A1

x
+
A2

x2
+ · · ·+ An

xn
+
An+1

xn+1
+ · · · ≡ Sn(x) +

An+1

xn+1
+ · · · . (3)

The expression Sn(x) is said to provide an asymptotic expansion of f(x) as x → ∞ if limx→∞ xn[f(x) −
Sn(x)] = 0 for a fixed n.

One of the most frequently used asymptotic methods in applied mathematics is Laplace’s method, for
integrals of the form

F (λ) =

∫ β

α

g(t)e−λf(t)dt, λ > 0. (4)

For λ � 1, we transform the integral into a form that admits the dominant contribution from a finite
portion of the path of integration. Suppose that portion is in a neighborhood of some t0. Then we Taylor
expand about t0. For this class we will solve problems where t0 ∈ (α, β) is the point at which f(t) attains
its absolute min; i.e., f ′(t0) = 0 and f ′′(t0) > 0.

We can Taylor expand f as follows,

f(t) = f(t0) +�
��*

0
f ′(t0)(t− t0) +

1

2
f ′′(t0)(t− t0)2 + · · · .

Then
e−λf(t) ≈ e−λf(t0)e−λ2 f

′′(t0)(t−t0)2 .

Let
Q(t) ≡ e−λ2 f

′′(t0)(t−t0)2 . (5)

Notice that as λ
2 f
′′(t0) gets bigger the slope drops precipitously. So, only the immediate neighborhood

around t0 matters because otherwise Q ≈ 0. Hence for λ� 1, g(t) ∼ g(t0). Then

F (λ) ≡
∫ β

α

g(t)e−λf(t)dt ∼ g(t0)e−λf(t0)
∫ β

α

Q(t)dt. (6)

1



If we let u =
√
f ′′(t0)/2(t− t0),

F (λ) ∼ g(t0)e−λf(t0)

√
2

f ′′(t0)

∫ ∞
−∞

e−λu
2

du = g(t0)e−λf(t0)

√
2π

λf ′′(t0)
(7)

as x→∞.
Now we may apply this to Stirling’s approximation,

n! ∼
√

2πnnne−n, (8)

which is often used in Statistics.
We first need an integral representation of the factorial. This is in the form of the Gamma function

Γ(s) =

∫ ∞
0

xs−1e−xdx. (9)

Notice that for s = n ∈ N,

Γ(n) =

∫ ∞
0

xn−1e−xdx.

Let u = xn−1 ⇒ du = (n− 1)xn−2 and dv = e−xdx⇒ v = −e−x, then

Γ(n) = (n− 1)!

if we continue the integration by-parts. This shows that the formula is indeed the continuous analog of the
factorial.

For Stirling’s approximation, we are interested in s� 1. We need to first transform Γ(s) into the form of
Laplace’s equation. Notice that

xs−1 = e(s−1) ln x ⇒ Γ(s) = es[ln x−
1
s ln x+ x

s ],

so let η(x) = lnx− 1
s lnx+ x

s . Notice that f ′(x0) = 0⇒ x0 = s− 1, which changes with s. To remedy this
let us make a change of variables t = x/(s− 1). Then

Γ(s) = (s− 1)s
∫ ∞
0

e−(s−1)f(t)dt; f(t) = t− ln t.

Then we have f ′(t0) = 0 ⇒ t0 = 1, then f(t0) = 1. To write this in terms of the integral from Laplace’s
method, let λ = s− 1 and f(t) = f(t0) + [f(t)− f(t0)],

Γ(λ) = λλ+1e−λ
∫ ∞
0

e−λ[f(t)−f(t0)]dt. (10)

Notice, however that we need −∞ to ∞, so let w = −
√
f(t)− f(t0) for t ≤ t0 and w =

√
f(t)− f(t0) for

t ≥ t0. Then,

w2 = t− 1− ln t =
1

2
(t− 1)2 − 1

3
(t− 1)3 + · · · , (11)

but we need dt/dw, so let t− 1 = a0w + o(w2) and match terms gives us a0 =
√

2. So,

Γ(λ) = λλ+1e−λ
∫ ∞
−∞

e−λw
2 dt

dw
dw ∼ λλ+1e−λ

∫ ∞
−∞

e−λw
2√

2dw = λλ+1e−λ
√

2π

λ
(12)

Finally,

n! = Γ(λ = n) ∼ nn+1e−n
√

2π

n
= nne−n

√
2πn (13)
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