MATH 5346 RAHMAN Week 8

LAPLACE’S METHOD

We did perturbation methods for ODEs, however they are not the only types of asymptotic expansions.
Consider the integral

f(z) = /OO t~ e tat; x> 1. (1)

We solve this via by-parts: u=t"! = du= —t"2, and dv = e 'dt = v = —e*?
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If we keep doing by-parts we get
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Notice that S, (x) = f(z) — Ry, (z) diverges as n — oo for all z € R. This is because factorials grow faster
than exponentials.

However, intuitively as x — oo it seems like the approximation won’t be too bad since it competes with

n! From analysis we know
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So, as © — 00, Ry, (z) — 0 for fixed n, and even for small n such as n =3, R,, < 1/144 ~ 0.007 for = > 6.
This is markedly different from Taylor series, which converges as n — co. This shows us that convergence
is not always necessary for a useful series.

Since t > x,

Definition 1. Consider the series
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The expression Sy, (z) is said to provide an asymptotic expansion of f(z) as * — oo if lim, o0 2™ [f(x) —
Sp(x)] = 0 for a fixed n.

One of the most frequently used asymptotic methods in applied mathematics is Laplace’s method, for
integrals of the form

F(\) = /Bg(t)e_’\f(t)dt, A> 0. (4)

For A > 1, we transform the integral into a form that admits the dominant contribution from a finite
portion of the path of integration. Suppose that portion is in a neighborhood of some ¢y. Then we Taylor
expand about ¢y. For this class we will solve problems where tg € (o, 8) is the point at which f(t) attains
its absolute min; i.e., f'(to) = 0 and f"(tg) > 0.

We can Taylor expand f as follows,
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f@t) = f(to) + fAt0)(t — to) + §f//(t0)(t* to)® + - -
Then
G py =M (t0) =3 7 (t0) (t=t0)?
Let

Q) = e 31" (to)(t—t0)* (5)

Notice that as % f"(to) gets bigger the slope drops precipitously. So, only the immediate neighborhood
around to matters because otherwise @ =~ 0. Hence for A > 1, g(t) ~ g(to). Then

Fov= | e Ot ~ g(tg)e=) / "o (6)
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If we let u = +/f"(to)/2(t — to),

~ afo), |2 [T g, ~M(to) [ 2T
FO) ~ glto)e ¢ ) /_Ooe du = g(tg)e t N (7)

as T — oo.
Now we may apply this to Stirling’s approximation,
n! ~\2rnn"e ", (8)

which is often used in Statistics.
We first need an integral representation of the factorial. This is in the form of the Gamma function

T'(s) = / 5 e d, (9)
0
Notice that for s =n € N,
I(n) = / " e .
0
Let u=2""!'=du=(n—1)2""2 and dv = e %dz = v = —e %, then
I'(n)=(mn-1)!
if we continue the integration by-parts. This shows that the formula is indeed the continuous analog of the
factorial.

For Stirling’s approximation, we are interested in s > 1. We need to first transform I'(s) into the form of
Laplace’s equation. Notice that

251 = gs—Dnz F(S) _ es[lnx—%lnx—i—%]
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solet n(z) =Inz — L Inz + £. Notice that f'(z9) = 0= z¢ = s — 1, which changes with s. To remedy this
let us make a change of variables ¢t = z/(s — 1). Then

F(s)z(s—l)S/ e~ G=DIOg. f(t) =t —Int.
0

Then we have f’(t9) = 0 = to = 1, then f(t{y) = 1. To write this in terms of the integral from Laplace’s
method, let A =s—1and f(t) = f(to) + [f(t) — f(t0)],

I\ = AA“e—*/m e AO=Ftol gy, (10)
0

Notice, however that we need —oco to oo, so let w = —\/f(t) — f(to) for t < tg and w = +/f(t) — f(to) for

t > ty. Then,
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but we need dt/dw, so let t — 1 = agw + o(w?) and match terms gives us ag = v/2. So,
°° dt o 5
T\ = )\A+1€—>\/ o A )\A+1ef>\/ N T /\’\+le’\\/7 12)
—o dw . h\
Finally,
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