
Math 5346 Rahman Week 9

Ch. 4 Heat conduction

Consider heat conduction in some bulk space V with a boundary ∂V . Also consider an infinitesimal space
in that bulk called dV . Let u(x, y, z, t) represent the temperature in V at any time t. Let E = cρu where c
is the specific heat and ρ is the mass density of the bulk, be the total energy in dV .

There are some fundamental laws that will lead us to the heat equation:

Fourier heat conduction laws:

(1) If the temperature in a region is constant, there is no heat transfer in that region.
(2) Heat always flows from hot to cold.
(3) The greater the difference between temperatures at two points the faster the flow of heat from

one point to the other.
(4) The flow of heat is material dependent.

All these laws can be summarized into one equation

φ(x, y, z, t) = −K0∇u(x, y, z, t) (1)

Now we can form a word equation:

(Rate of change of heat) = (Heat flowing into dV per unit time) + (Heat generated in dV per unit time)
(2)

The first statement is the rate of change of the total energy E. The second is the flux at ∂V in the normal
direction. The third is additional heat being generated in dV . For the third statement lets called the
additional heat Q. This gives us the equation

∂

∂t

˚
V

cρu dV = −
‹
∂V

φ · ndS +

˚
V

QdV (3)

And using divergence theorem we get

‹
∂V

φ · ndS =

˚
V

∇ · φdV =

˚
V

∇ · (−K0∇u) dV = K0

˚
V

∇2u dV

therefore, the equation becomes

∂

∂t

˚
V

cρu dV =

˚
V

cρ
∂

∂t
u dV = K0

˚
V

∇2u dV +

˚
V

QdV ⇒ cρ
∂u

∂t
= K0∇2u+Q. (4)

If we consider the case Q = 0; i.e., no external heat being generated, and if we divide through by cρ, then
we get the simplest form of the heat equation

∂u

∂t
= K∇2u (5)

where K is called the thermal diffusivity. In 1-D this is,

∂u

∂t
= K

∂2u

∂x2
(6)
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Heat equation examples. Consider the heat equation with a generic initial condition,

∂u

∂t
= k

∂2u

∂x2
; u(x, 0) = f(x). (7)

with the following boundary conditions

Ex: u(0, t) = u(L, t) = 0.
Solution: We make the Ansatz, u(x, t) = T (t)X(x). Then we plug this into our heat equation

ut = T ′(t)X(x), uxx = T (t)X ′′(x)⇒ T ′X = kTX ′′ ⇒ T ′

kT
=
X ′′

X
.

Since the LHS is a function of t alone, and the RHS is a function of x alone, and since they are
equal, they must equal a constant. Lets call it −λ2. Then we have

T ′

kT
=
X ′′

X
= −λ2. (8)

Notice that I call this from the get go because in our Sturm-Liouville problems the negative eigenvalue
case always gave us trivial solutions. Here we bypass that by automatically assuming a positive
eigenvalue λ2. Now we must solve the two differential equations.

The T equation is the easiest to solve

T ′

kT
= −λ2 ⇒ T ′ = −kλ2T ⇒ dT

dt
= −kλ2T ⇒ dT

T
= −kλ2dt⇒

ˆ
dT

T
=

ˆ
−kλ2dt⇒ lnT = −kλ2t⇒ T = e−kλ

2t

Notice that we don’t include the constant in front of the exponential, and that is because the X
equation will have constants, and we would simply by multiplying constants to reduce it to one
constant anyway, so I choose to leave it out from the beginning. You don’t have to though.

Now, we solve the X equation by recalling our Sturm-Liouville problems

X ′′

X
= −λ2 ⇒ X ′′ + λ2X = 0⇒ X = A cosλx+B sinλx for λ 6= 0 and X = c1x+ c2 for λ = 0.

If we look at the λ = 0 case we have X(0) = c2 = 0 and X(L) = Lc1 = 0, so X ≡ 0.
Now we look at the λ 6= 0 case. X(0) = A = 0 and

X(L) = X(L) = B sinλx = 0⇒ λ =
nπ

L
⇒ Xn = Bn sin

nπ

L
x and Tn = e−k(

nπ
L )

2
t

Next we combine the T and X solutions to get the general solutions,

u(x, t) =

∞∑
n=1

Bn sin
nπx

L
e−k(

nπ
L )

2
t (9)

And we can solve for the constants using the principles from Fourier series with the initial condition.
Since this is a Fourier sine series we have

u(x, 0) =
∑
n=1

Bn sin
nπx

L
= f(x)⇒ Bn =

2

L

ˆ L

0

f(x) sin
nπx

L
dx

Then our full solution is

u(x, t) =
2

L

∑
n=1

sin
nπx

L
e−k(

nπ
L )

2
t

ˆ L

0

f(x) sin
nπx

L
dx (10)

Ex: ux(0, t) = ux(L, t) = 0.

Solution: We know from the first example that T = e−kλ
2t.

For the X equation we need to look at our two cases. For λ = 0 we have X = c1x + c2, and
X ′(x) = c1, so for both boundaries X ′(0) = c1 = X ′(L). These leaves us with a constant X = c2.

For the λ 6= 0 case we have

X = A cosλx+B sinλx⇒ X ′ = −λA sinλx+ λB cosλx

Then we get X ′(0) = λB = 0 and

X ′(L) = −λA sinλL = 0⇒ λ =
nπ

L
⇒ Xn = An cos

nπx

L
and Tn = e−k(

nπ
L )

2
t



Next we combine the T and X solutions to get our general solution

u(x, t) = c2 +

∞∑
n=1

An cos
nπx

L
e−k(

nπ
L )

2
t (11)

Now we find our coefficients by invoking the initial condition and using Fourier Series

u(x, 0) = c2 +

∞∑
n=1

An cos
nπx

L
= f(x)

This gives us

c2 =
1

L

ˆ L

0

f(x)dx

and

An =
2

L

ˆ L

0

f(x) cos
nπx

L
dx

Combining everything we get the full solution

u(x, t) =
1

L

ˆ L

0

f(x)dx+
2

L

∞∑
n=1

cos
nπx

L

ˆ L

0

f(x) cos
nπx

L
dx (12)

Ex: Now lets think of heat transfer in a circle. If we go around in one direction we hit x = −L and in the
other direction x = L, but these are the same point. So we get the following boundary conditions

u(−L, t) = u(L, t), ux(−L, t) = ux(L, t) (13)

Solution: We know from the previous two problems that our solutions will be

T = e−kλ
2t

X = c1x+ c2 for λ = 0

X = A cosλx+B sinλx for λ 6= 0

For λ = 0, X(L) = c1L + c2 and X(−L) = −c1L + c2, so c1 = 0. And the derivative is trivially
satisfied.

For λ 6= 0,

X(L) = X(−L)⇒ A cosλL+B sinλL = A cosλL−B sinλL⇒ sinλL = 0⇒ λ =
nπ

L

And

X ′(L) = X ′(−L)⇒ −λA sinλL+ λB sinλL = λA sinλL+ λB cosλL⇒ sinλL = 0

But we already showed this. So, we need to keep both coefficients. Then our solution for X, which
as we saw in previous conditions (for the heat equation) is just the initial condition of the general
solution, is

X = c2 +

∞∑
n=1

An cos
nπx

L
+Bn sin

nπx

L
= u(x, 0) = f(x) (14)

Now we use Fourier series to solve for the coefficients,

c2 =
1

L

ˆ L

0

f(x)dx

An =
2

L

ˆ L

0

f(x) cos
nπx

L
dx

Bn =
2

L

ˆ L

0

f(x) sin
nπx

L
dx

Putting everything back into the general solution gives us

u(x, t) =
1

L

ˆ L

0

f(x)dx+
2

L

∞∑
n=1

cos
nπx

L

ˆ L

0

f(x) cos
nπx

L
dx+ sin

nπx

L

ˆ L

0

f(x) sin
nπx

L
dx (15)



Nonhomogeneous heat conduction examples.

Ex: Consider the following nonhomogeneous boundary condition problem

ut = kuxx; u(0, t) = A, u(L, t) = B; u(x, 0) = f(x). (16)

We first look for the easiest solution: the equilibrium temperature. What does equilibrium mean?
We solve the problem

∂u∗
∂t

= 0⇒ ∂2u∗
∂x2

= 0; u∗(0) = A, u∗(L) = B.

So, u∗ = c1x + c2, and u∗(0) = c2 = A, u∗(L) = c1L + A = B, then our equilibrium solution is
u∗ = B−A

L x+A. Obviously, this does not solve the problem, but it does allow us to make a change of
variables that makes the B.C.’s homogeneous. Let v(x, t) = u(x, t)−u∗(x). Taking a time derivative
kills u∗ and taking two spatial derivatives also kills u∗, so we get

vt = kvxx; v(0, t) = v(L, t) = 0; v(x, 0) = f(x)− u∗ = f(x)− B −A
L

x+A (17)

We know

v(x, t) =

∞∑
n=1

An sin
nπx

L
e−k(nπ/L)

2t, (18)

then

v(x, 0) =

∞∑
n=1

An sin
nπx

L
= f(x)− B −A

L
x+A

⇒ An =
2

L

ˆ L

0

(f(x)− B −A
L

x+A) sin
nπx

L
dx

which gives us

u(x, t) =
B −A
L

x+A+

∞∑
n=1

An sin
nπx

L
e−k(nπ/L)

2t (19)

Ex: Now lets look at an example where the PDE itself is nonhomogeneous

ut = kuxx +Q; u(0, t) = A, u(L, t) = B; u(x, 0) = f(x). (20)

Then uxx = −Q/k ⇒ u∗ = −Qx2/2k + c1x+ c2. Plugging in the BCs gives us u∗(0) = c1 = A and

u∗(L) = − Q
2k
L2 + c1L+A = B ⇒ c1 =

1

L

[
B −A+

Q

2k
L2

]
⇒ u∗ = − Q

2k
x2 +

x

L

[
B −A+

Q

2k
L2

]
+A

Letting v(x, t) = u(x, t)− u∗(x) gives us our homogenized equation.
4)

ut = kuxx; u(0, t) = u0, u(1, t) = u1; u(x, 0) = f(x) (21)

Solution: uxx = 0⇒ u∗ = c1x+c2, so u∗(0) = c2 = u0 and u∗(1) = c1+u0 = u1 ⇒ c1 = u1−u0,
then our equilibrium solution is u∗ = (u1 − u0)x+ u0. Letting v = u− u∗ gives us our homogenized
equation.
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