
Math 112 - 018 Rahman Exam 2 Practice Problems

Spring 2011 solutions

Exam 1 Problem 7: This is problem 7 from Exam 1 of Spring 2011.
(a)

d

dx
[
√
x cosh(

√
x)] =

1

2
√
x

cosh(
√
x) +

1

2
sinh(

√
x).

(b) We convert tanh(3x) = sinh(3x)/ cosh(3x), and use u = cosh(3x)⇒
du = 3 sinh(3x),

∫
tanh(3x)dx =

∫
sinh(3x)

cosh(3x)
dx =

1

3

∫
du

u
=

1

3
ln |u| = 1

3
ln | cosh(3x)|.

(1) (a) This is a typical integration by parts problem. Use u = x ⇒
du = dx and dv = cosx⇒ v = sinx.

∫ π

0
x cosxdx = x sinx|π0 −

∫ π

0
sinxdx = x sinx+ cosx|π0 = −2.

(b) Notice ∆x = (b−a)/n = π/3, and x0 = 0, x1 = π/3, x2 = 2π/3,
x3 = π, then we plug this into our formula,

I ≈ π

6

[
2π

3
cos

π

3
+

4π

3
cos

2π

3
− π

]
=
π

6

[
π

3
− 2π

3
− π

]
= −2

9
π2

(2) (a) There are two equivalent ways of solving this. I will solve it one
way, and you should solve it the other way and then ask me in
class about it and answer the question that I will pose.
First we use the trig identity tan2 x = 1 + sec2 x,

∫
tan3 xdx =

−
∫

tanxdx+
∫

tanx sec2 xdx. Then we use u = tanx⇒ du =
sec2 xdx for the second integral, then

I = −
∫

tanxdx+

∫
tanx+ sec2 xdx = ln | cosx|+

∫
udu = ln | cosx|+ 1

2
tan2 x+ C.

What is another solution? Is the other solution equivalent to
this? Explain your answer.
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(b) We integrate this by partial fractions. The denominator is al-
ready factored, so we go straight to the partial fractions,

2x+ 1

x(x− 1)2
=
A

x
+

B

x− 1
+

C

(x− 1)2
=
A(x− 1)2 +Bx(x− 1) + Cx

x(x− 1)2

We simplify the numerator of the RHS, A(x−1)2 +Bx(x−1)+
Cx = A(x2 − 2x + 1) + B(x2 − x) + Cx = (A + B)x2 + (C −
B − 2A)x+A = 2x+ 1. Matching the coefficients gives, A = 1
straight away, then B = −1, then C = 3. Plugging these back
in and integrating gives,

I =

∫
dx

x
−
∫

dx

x− 1
+

∫
3dx

(x− 1)2
= ln |x| − ln |x− 1| − 3

x− 1
.

(3) Both of these are improper integrals, so let’s make that our focus.
For these types of problems do not use a test, just evaluate the
integral, then make your conclusion.
(a)

∫ ∞
1

x2dx

(2x3 + 1)3/2
= lim

t→∞

∫ t

1

x2dx

(2x3 + 1)3/2

This is solved via u-sub where u = 2x3 + 1⇒ du = 6x2dx,

I =
1

6
lim
t→∞

∫ 2t2+1

3
u−3/2du =

1

6
lim
t→∞
−2u−1/2 =

1

3
lim
t→∞

−1√
2t2 + 1

+
1√
3

=
1

3
√

3
.

Hence, the integral is convergent because the limit exists.
(b)

∫ 8

0

dx

(x− 8)2/3
= lim

t→8−

∫ t

0

dx

(x− 8)2/3
.

We solve this via u-sub where u = x− 8⇒ du = dx,

I = lim
t→8−

∫ t−8

−8
u−2/3du = lim +t→ 8−3u1/3

∣∣t−8
−8 = lim

t→8−
3(t− 8)1/3 + 6 = 6.

Hence, the integral is convergent because the limit exists.



(4) (a) This is a typical trig-sub problem, with the substitution x =
sin θ,

I =

∫
5 cos θdθ

52 sin2 θ
√

25− 25 sin2 θ
=

∫
5 cos θdθ

52 sin2 θ(5 cos θ)
=

1

25

∫
csc2 θ = − 1

25
cot θ + C.

Now, we must solve for cot θ. Notice sin θ = x/5, so the adjacent

side is
√

25− x2, then cot θ =
√
25−x2
x , so

I = −
√

25− x2
25x

+ C.

(b) This is a typical integration by parts problem where u = lnx⇒
du = dx/x, and dv = dx/x3 = x−3dx⇒ v = −x−2/2, then

∫
lnx

x3
dx =

−1

2
x−2 lnx+

1

2

∫
x−3dx =

−1

2
x−2 lnx− 1

4
x−2 + C.

(5) Here are some more improper integral questions, but these allow you
to use a test. When you are allowed to use a test, use a test and
make your conclusion, and do not evaluate the integral.
(a) This is your typical limit comparison test problem because the

numerator gives us difficulties, so lets divide through by the
highest power of the numerator,

1
x

√
x2 + 1
1
xx

3
=

√
1 + 1

x2

x2
∼ 1

x2
.

Now, we take the limit to make sure we are allowed to make
this comparison,

lim
x→∞

√
x2+1
x3

1
x2

= lim
x→∞

√
x2 + 1

x
= lim

x→∞

√
1 +

1

x2
= 1.

So, we compare this to 1/x2. Since p > 1,
∫∞
1 dx/x2 converges,

therefore by the limit comparison test
∫∞
1

√
x2+1
x3

dx converges.



(b) This is a typical direct comparison test problem. Notice that
−1 ≤ sin(2x) ≤ 1, then

1

x
≤ 2 + sin(2x)

x
≤ 3

x
.

Decisions, decisions, which do we choose? If we are having
trouble choosing we can go straight to limit comparison test.
However, notice that we have to integrate 1/x, and we know for
the limits provided, this will diverge. So we pick the smaller
of the two, i.e. 1/x instead of 3/x. Now, since

∫∞
π dx/x di-

verges, then by the direct comparison test
∫∞
π (2 + sin(2x)/x)

also diverges.
(6) Notice that the highest power of the numerator is equal to the highest

power of the denominator, so we must use long division first, from
which we get

x3 + 8

x3 + 4x
= 1 +

−4x+ 8

x3 + 4x
= 1 +

−4x+ 8

x(x2 + 4)
.

Now, we can break this up into partial fractions,

−4x+ 8

x(x2 + 4)
=
A

x
+
Bx+ C

x2 + 4
=
A(x2 + 4) + (Bx+ C)x

x(x2 + 4)
=

(A+B)x2 + Cx+ 4A

x(x2 + 4)
.

Now, we equate the coefficients to get C = −4 and A = 2 straight
away, then B = −2. Putting this back into the integral we get,

∫
x3 + 8

x3 + 4x
dx =

∫ (
1 +

2

x
− 2x+ 4

x2 + 4

)
dx = x+ 2 ln |x| −

∫
2xdx

x2 + 4
−
∫

4dx

x2 + 4

We solve the penultimate by u-sub with u = x2 +4⇒ du = 2xdx,

∫
2xdx

x2 + 4
=

∫
du

u
= ln |u| = ln |x2 + 4|.

And for the last integral we divide through by 4 in the numerator
and denominator and use u = x/2⇒ du = dx/2, then

∫
4dx

x2 + 4
=

∫
dx

(x/2)2 + 1
= 2

∫
du

u2 + 1
= 2 tan−1 u = 2 tan−1

x

2

Then our final answer is,

I = x+ 2 ln |x| − ln |x2 + 4| − 2 tan−1
x

2
+ C.



(7) This is a typical trig-sub problem, where we use x = tan θ ⇒ dx =
sec2 θdθ.

∫
dx

(1 + x2)5/2
=

∫
sec2 θdθ

(1 + tan2 θ)5/2
=

∫
sec2 θ

sec5 θ
dθ =

∫
dθ

sec3 θ
=

∫
cos3 θdθ.

This is our usual trig integral where we use cos2 θ = 1 − sin2 θ,
then

∫
cos3 θdθ =

∫
(1− sin2 θ) cos θdθ =

∫
cos θdθ −

∫
sin2 θ cos θdθ = sin θ −

∫
sin2 θ cos θdθ.

The first integral is easy, and for the second integral we use u-sub
with u = sin θ ⇒ du = cos θdθ, then

∫
sin2 θ cos θdθ =

∫
u2du =

1

3
u3 =

1

3
sin3 θ.

Then, we get

I = sin θ − 1

3
sin3 θ + C.

Now, we must substitute back. Since tan θ = x, the hypotenuse
will be

√
x2 + 1, then sin θ = x/

√
x2 + 1, and plugging this back in

gives

I =
x√

x2 + 1
− 1

3

(
x√

x2 + 1

)3

θ + C.

(8) (a) We take the limit,

lim
n→∞

(
n3 + 5n4

2n4 + 2n− 1

)1/3

= lim
n→∞

(
1/n+ 5

2 + 2/n3 − 1/n4

)1/3

=

(
5

2

)1/3

.

Since the limit exists, the sequence converges.
(b) Taking the limit gives,

lim
n→∞

n sin

(
1

n

)
= lim

n→∞
sin(1/n)

1/n
= lim

n→∞

−1
n2 cos(1/n)

−1
n2

= 1,

hence the sequence converges.



Fall 2011 solutions

(1) (a) Taking the limit gives,

lim
n→∞

ln(n)√
x

= lim
n→∞

1/n

1/2
√
n

= lim
n→∞

2
√
n

n
= lim

n→∞
2√
n

= 0,

hence the sequence converges.
(b) Taking the limit gives,

lim
n→∞

ln(2n)− ln(n+ 1) = lim
n→∞

ln
2n

n+ 1
= lim

n→∞
ln

2

1 + 1/n
= ln 2,

hence the sequence converges.
(2) (a) First we break up the fraction into partial fractions. Now for

this problem, we may be able to see what the partial fractions
are right away, in which case we don’t have to carry out the
operations, but if we choose to do the partial fractions in our
head we must make sure it works!

1

x2 + x
=

1

x(x+ 1)
=
A

x
+

B

x+ 1
=
Ax+A+Bx

x(x+ 1)
=

(A+B)x+A

x2 + x
.

We get A = 1 straight away, then B = −1, so

I =

∫
dx

x
−
∫

dx

x+ 1
= ln |x| − ln |x+ 1|

∣∣5
1

= ln |5| − ln |6|+ ln |2| = ln |5/3|

(b) Notice ∆x = (b− a)/n = 4/4 = 1, then x0 = 1, x1 = 2, x2 = 3,
x3 = 4, x4 = 5. Plugging this into the trapezoid rule formula
give,

I ≈ ∆x

2
[f(1) + 2f(2) + 2f(3) + 2f(4) + f(5)] =

1

2

[
1

2
+

1

3
+

1

6
+

1

10
+

1

30

]
=

17

30
.

(c) Using the above values and plugging them into the Simpson’s
rule formula gives,

I ≈ ∆x

3
[f(1) + 4f(2) + 2f(3) + 4f(4) + f(5)] =

1

3

[
1

2
+

2

3
+

1

6
+

1

5
+

1

30

]
=

47

90
.



(3) (a) This is a typical trig integral problem where x = 1
3 tan θ ⇒

dx = 1
3 sec2 θdθ.

∫
dx√

1 + 9x2
=

1

3

∫
sec2 θdθ

sec θ
=

1

3
ln | sec θ + tan θ|+ C.

Notice tan θ = 3x, then the hypotenuse is
√

9x2 + 1, so sec θ =√
9x2 + 1, then

I =
1

3
ln

∣∣∣∣√9x2 + 1 + 3x

∣∣∣∣+ C.

(b) We first separate the fraction into partial fractions,

x2

(x− 1)3
=

A

x− 1
+

B

(x− 1)2
+

C

(x− 1)3
=
A(x− 1)2 +B(x− 1) + C

(x− 1)3

=
Ax2 − 2Ax+A+Bx−B + C

(x− 1)3
=
Ax2 + (B − 2A)x+A−B + C

(x− 1)3
.

Matching the coefficients gives us A = 1 straight away, then
B = 2 and C = 1. Now we put this back in and integrate,

I =

∫
dx

x− 1
+ 2

∫
dx

(x− 1)2
+

∫
dx

(x− 1)3

We use u = x− 1⇒ du = dx, then

I = ln |x− 1| − 2

x− 1
− 1/2

(x− 1)2
.

(4) (a) We first integrate by parts using u = tan−1 x⇒ du = 1/(1+x2),
and dv = xdx⇒ v = x2/2,

∫
x tan−1 xdx =

1

2
x2 tan−1 x− 1

2

∫
x2

1 + x2
dx.

Notice the last integral is a trig-sub where we use x = tan θ ⇒
dx = sec2 θdθ,

∫
x2

1 + x2
dx =

∫
tan2 θ sec2 θ

sec2 θ
dθ =

∫
tan2 θdθ =

∫
(sec2 θ − 1)dθ = tan θ − θ = x− tan−1 x

Then plugging back in gives,

I =
1

2
x2 tan−1 x− x

2
+

1

2
tan−1 x+ C.



(b) This is a typical trig-sub problem where x = 2 sin θ ⇒ dx =
2 cos θdθ.

∫
x2dx

(4− x2)3/2
=

∫
4 sin2 θ(2 cos θ)dθ

(4− 4 sin2 θ)3/2
=

∫
4 sin2 θ(2 cos θ)dθ

8 cos3 θ
=

sin2 θdθ

cos2 θ

=

∫
tan2 θdθ =

∫
(sec2 θ − 1)dθ = tan θ − θ + C.

Now we must substitute back. Since sin θ = x/2, then the

adjacent side is
√

4− x2, so tan θ = x/
√

4− x2,

I =
x√

4− x2
− sin−1

x

2
+ C.

(5) (a) We break this fraction into partial fractions,

4x− 8

x3 + 4x
=

4x− 8

x(x2 + 4)
=
A

x
+
Bx+ C

x2 + 4
=
A(x2 + 4) + (Bx+ C)x

x(x2 + 4)
=

(A+B)x2 + Cx+ 4A

x3 + 4x
.

Then we get C = 4 and A = −2 straight away, then B = 2.
Plugging this the integral gives,

∫
4x− 8

x3 + 4x
= −2

∫
dx

x
+

∫
2x+ 4

x2 + 4
= −2 ln |x|+

∫
2xdx

x2 + 4
+

∫
4dx

x2 + 4

= −2 ln |x|+ ln |x2 + 4|+ 2 tan−1
(
x

2

)
+ C.

I didn’t go through the details of the second and third integrals
because these integrals were done a few pages back.

(b) We solve this problem by parts using u = x ⇒ du = dx, and
dv = coshxdx⇒ v = sinhx,

∫
x coshxdx = x sinhx−

∫
sinhxdx = x sinhx− coshx+ C.

(6) (a) We solve this via u-sub with u = −x2 ⇒ du = −2xdx, but this
is also an improper integral,

∫ ∞
0

xe−x
2
dx = lim

t→∞

∫ t

0
xe−x

2
= lim

t→∞

−1

2

∫ −t2
0

eudu = −1

2
lim
t→∞

eu
∣∣−t2
0

= −1

2
lim
t→∞

e−t
2 − 1 =

1

2
.



(b) Again we do a u-sub with u = tanx ⇒ du = sec2 xdx, but we
keep in mind that it is also an improper integral,

∫ π/2

0
tanx sec2 xdx = lim

t→π
2
−

∫ t

0
tanx sec2 xdx = lim

t→π
2
−

∫ tan t

0
udu

=
1

2
lim
t→π

2
−
u2
∣∣tan t
0

=
1

2
lim
t→π

2
−

tan2 t =∞

So, the integral diverges.
(7) For these problems just use the comparison tests without evaluating

the integral.

(a) Notice e1/x ≤ e for x ∈ [1,∞), so e1/x

x3
≤ e

x3
on [1,∞). Since

p > 1,
∫∞
0

dx
x3

converges, hence any constant multiple of that

integral will also converge, so
∫∞
0

edx
x3

. Therefore, by the direct

comparison test
∫∞
1

e1/x

x3
dx converges.

(b) Now, this is a problem that would be difficult to find a di-
rect comparison for, but we must find some sort of comparison
nonetheless. We will experience difficulty due to the denomina-
tor, so lets divide through by the highest power of the denom-
inator to see what we get. Now, we may be able to tell right
away what the comparison is then we don’t have to go through
this process. But this is something that might help in finding
the comparison.

x√
x3 + 2

=
x/
√
x3√

1 + 2/x3
=

1/
√
x√

1 + 2/x3
∼ 1√

x
.

So, we compare our kernel to 1/
√
x. We prove this is a valid

comparison by taking the limit of the ratios,

lim
x→∞

x/
√
x3 + 2

1/
√
x

= lim
x→∞

√
x3√

x3 + 2
= lim

x→∞
1√

1 + 2/x3
= 1.

Since the limit exists, this is a valid comparison. Now, we know
that

∫∞
1 dx/

√
x diverges because p < 1. Therefore, by the limit

comparison test,
∫∞
1

xdx√
x3+2

also diverges.


