
Math 112 - 018 Rahman Exam I

Spring 2014 solutions

(1) We find our formula for F first. We know for a spring F = kx,
and since it takes 200N to stretch the spring .8m from its natural
position, F (.8) = 4

5k = 200⇒ k = 250. Then, F = 250x.

(a) 250x = 300⇒ x = 300
250 = 6

5 = 1.2m
(b) F (x) = 250xN, so we get

W = 250

∫ 1

0
xdx = 125x2|10 = 125J.

(2) We first find the derivative: dy
dx = 1
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this into the surface area formula,
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(3) Notice, this is easier if we convert the problem in terms of y, so

y = 3x2/3 ⇒ x =
(y
3

)3/2
. Then we differentiate, dx
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y. Plugging this into the formula for arc length gives,
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We solve this via u-sub, where u = 1 + y/12⇒ du = dy/12, then

L = 12
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(4) This is very similar to the cable problems we did and it is exactly
like the sandbag problem in the homework. The starting weight is
105lb and the rate at which the water is escaping is 10lb every 200ft
or 1/20lb/ft. Then the weight change of the system for any given
change in distance ∆x will be F = 105− 1

20∆x. Then the work is,

W = (105)(200)−
∫ 200

0

x

20
dx = (105)(200)− 1

10
x2
∣∣∣∣200
0

= (105)(200)− 2002

10
= (200)(105− 20) = 1.7x104.
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(5) We’ve done this type of problem plenty of times, so lets go straight
to the volume of each infinitesimally small cylinder: V = πr2h where
r = x and h = ∆y, so V = πx2∆y = π

2 y∆y, then the weight of each
cylinder is: F = 15πy∆y. To pull each little piece up to y = 2 we
exert a work of W = 15πy(2 − y)∆y. Now, to get the limits we
notice that we move the first piece 1ft from y = 1 and the last piece
2ft from y = 0. Then, the work is

W = 15π

∫ 1

0
y(2− y)dy = 15πy2
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0

= 10π.

(6) Since we are using cylindrical shells we recall the formula for cylin-
drical shells,

V = 2π

∫ b

a
r(x)h(x)dx.

(a) Here our radius will be r = x and our height will be h = y =
1/(1 + x2), then we solve for our volume via u-sub

V = 2π

∫ 1

0
x

1

1 + x2
dx = π

∫ 2

1

du

u
= π lnu|21 = π ln 2.

(b) Here our radius will be r = x + 1 and our height remains the
same, then

V = 2π

∫ 1

0
(x+ 1)

1

1 + x2
dx = 2π

∫ 1

0

xdx

1 + x2
+ 2π

∫ 1

0

dx

1 + x2
.

Now, the first integral we already solved in part a, and the
second integral is our usual tan−1. Told ya he loves tan−1.
This gives,

V = π ln 2 + 2π tan−1 x|10 = π ln 2 +
π2

2
.



(7) Here it’s a little tricky because our region is in the second quadrant,
but all the theory is the same. We recall our formula for the washer
method,

V = π

∫ b

a
(R(x)2 − r(x)2)dx.

Here our range for x will be −1 to 0. Our big radius is R = e and
our little radius is r = e−x, then

V = π

∫ 0
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(8) For this problem its difficult to figure out what the region looks like,
but the beauty of math is we don’t have to see it to understand it.
It’s some region where the base goes from y = 0 to y = secx, and the
height will be double the length of the base. Then our cross-sectional
area is A = y · 2y = 2 sec2 x, and our volume is

V = 2

∫ π/4

0
sec2 xdx = 2 tanx|π/40 = 2.


