
Math 112 - 018 Rahman Exam 3

Spring 2014 solutions

(1) (a) We use the limit comparison test. To find what comparison we
need we take the biggest term in the numerate and denominator
i.e. n/n3 = 1/n2. Now, we take the limit to show this is a valid
comparison,

lim
n→∞

(n− ln(n))/(2n3 + 1)

1/n2
= lim

n→∞
n3 − n2 lnn

2n3 + 1
= lim

n→∞
1− ln(n)/n

2 + 1/n
=

1

2
.

Now, since
∑∞

n=1 1/n2 converges because p > 1, the original
series converges by the limit comparison test.

(b) We use limit comparison again. Here lets use 1/n and take the
limit,

lim
n→∞

(n2 + 1)/(n3 + n2)

1/n
= lim

n→∞
n3 + n

n3 + n2
= lim

n→∞
1 + 1/n2

1 + 1/n
= 1.

Since
∑∞

n=1 1/n diverges because p = 1, the original series also
diverges by the limit comparison test.

(2) (a) We have a feeling this diverges, so lets take the limit of the
“nth” term limn→∞ cos 1

n = 1 6= 0, and hence the sum diverges.

(b) It’s best to first massage the series into a form we are comfort-

able with,
∑∞

n=1
4n+1

nn/2 = 4
∑∞

n=1
4n

(n1/2)
n . Now, lets use the root

test,

lim
n→∞

n

√
|an| = lim

n→∞
4√
n

= 0 < 1.

Therefore, the series converges by the root test.

(3) (a) We use integral test for this. Since we should be experts in
u-sub I wont show those steps,

∫ ∞
1

e−
√
x

√
x

dx = 2

∫ ∞
1

e−udu = −2e−u
∣∣∣∣∞
1

=
2

e
.

By the integral test, since the integral converges, so does the
original series.
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(b) There are a few ways of doing this problem, but lets take the
suggestion used in class because that’s the most direct way of
doing this problem. Lets use limit comparison by taking the
highest term in the denominator and the numerator which will
be nn/(2n)n = 1/2n. Now lets take the limit,

lim
n→∞

(2n + nn)/(1 + (2n)n)

1/2n
= lim

n→∞
4n + (2n)n

1 + (2n)n
= lim

n→∞
(2/n)n + 1

1/(2n)n + 1
= 1.

Since
∑∞

n=1 1/2n converges by the geometric series because 1/2 <
1, by the limit comparison test the original series also converges.

(4) (a) We have an alternating series, but lets first test for absolute
convergence via ratio test,

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ 8n+1

(n + 1)!
· lim
n→∞

n!

8n

∣∣∣∣ = lim
n→∞

8

n + 1
= 0 < 1.

Therefore, by the ratio test, the series is absolutely convergent.

(b) To avoid any deductions we really should use limit compari-
son. We can use direct comparison as well, but that gets really
tricky. Fortunately, I think the grader was lenient, probably
more lenient than I would have been.
We take the largest term in the numerator and denominator to
get n/

√
n3 = 1/

√
n, now lets take the limit,

lim
n→∞

n/
√
n3 + 1

1/
√
n

= lim
n→∞

√
n3

√
n3 + 1

= lim
n→∞

1√
1 + 1/n3

= 1.

Since
∑∞

n=1 diverges by p-series because p¡1, the original se-
ries can not be absolutely convergent. Since it’s an alternating
series, lets try to prove conditional convergence.
First we show that the nth term goes to zero,

lim
n→∞

n√
n3 + 1

= lim
n→∞

1√
n + 1/n2

= 0.

Now to show it’s decreasing. We must take the derivative for
this. Again, the grader was very generous, but I certainly would
have marked it incorrect if the derivative wasn’t taken.(

n√
n3 + 1

)′
=

2− n3

2(n3 + 1)3/2
.

Notice, this is < 0 for n ≥ 2, and therefore by the alternating
series test, the series converges conditionally.



(5) We go straight to ratio test,

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣2n+1(x + 2)n+1

√
n + 1

·
√
n

2n(x + 2)n

∣∣∣∣ = lim
n→∞

2

√
n√

n + 1
|x + 2|

= lim
n→∞

2
1√

1 + 1/n
|x + 2| = 2|x + 2| < 1⇒ |x + 2| < 1/2.

Hence, the radius of convergence is R = 1/2 and the series con-
verges absolutely for −2.5 < x < −1.5. Now, we must test the
end points. When x = −1.5, our series becomes

∑∞
n=1 7n/

√
n, but

limn→∞ 7n/
√
n =∞ 6= 0, so it diverges there. For x = −2.5, our se-

ries becomes
∑∞

n=1
(−1)n√

n
. Taking the limit gives, limn→∞ 1/

√
n = 0.

Further, 1/
√
n > 1/

√
n + 1. Therefore it converges at this point

by the alternating series test. Hence, our interval of convergence is
−2.5 ≤ x < −1.5.

(6) Again we use ratio test,

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣
√
n + 1(x− 1)n+1

(n + 2)!
· (n + 1)!√

n(x− 1)n

∣∣∣∣ = lim
n→∞

√
n + 1

(n + 2)
√
n
|x− 1|

= lim
n→∞

√
1 + 1/n

(n + 2)
|x− 1| = 0.

Hence, this has a radius of convergence R = ∞ and interval of
convergence (−∞,∞).

(7) (a) We know the Taylor series of ex =
∑∞

n=0
xn

n! , hence

e−x
3

=
∞∑
n=0

(−x3)n

n!
=
∞∑
n=0

(−1)nx3n

n!

However, if you used this it’s all or nothing, so you should have
only used this if you were 100% confident.

(b) Here we simply integrate term by term and plug in our values,

∫ 0.1

0
f(x)dx =

∞∑
n=0

(−1)nx3n+1

(3n + 1)n!

∣∣∣∣
x=0.1

=
∞∑
n=0

(−1)n(.1)3n+1

(3n + 1)n!
.

(c) For this we need the alternating series error, which is just the
next term, |R1| ≤ |x7/2| ≤ (.1)7/2.



(8) (a) For this problem we are forced to compute the Taylor series
manually, f(1) = e, f ′(1) = ex + xex

∣∣
x=1

= 2e, f ′′(1) = 2ex +

xex
∣∣
x=1

= 3e, f ′′′(1) = 3ex + xex
∣∣
x=1

= 4e, therefore

xex ≈ e + 2e(x− 1) +
3e

2
(x− 1)2 +

2e

3
(x− 1)3.

(b) We need to compute the fourth derivative for our Taylor re-

mainder, f (4)(x) = 4ex +xex, and we need to bound this on our

interval. Plugging in 2 provides such a bound, |f (4)(x)| ≤ 6e2,
so we choose M = 6e2. Then,

|R3| ≤
∣∣∣∣6e24!

(x− 1)4
∣∣∣∣ ≤ 6e2

24
=

e2

4
.


