Math 112 - 018 Rahman Final Exam Practice Problems

SPRING 2011 SOLUTIONS

(1) We use disks to solve this,

1 1
V= 7r/ (ze®)dx = 7r/ z2e?®dz.
0 0

We solve this via integration by parts with v = 22 = du = 2zdx
and dv = e?*dz = v = €2/2,

1 1
— 71'/ xe?®dz.
0 0

This is another integration by parts with u = * = du = dz and
dv = e?*dz = v = ¥ /2,

s
V= 7]},262x
2

1 1
1 e  me?  m oo,
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+ 7 —edr = —— —+ — =—(e”"—1).
. /026 z 5 5 e , (e )

(2) (a) This is a typical partial fractions problem,

6r +8 A B C

x(x + 2)2 _E+x+2+(x+2)2'

This gives us A(x +2)? + Br(z +2) + Cx = A(z? +4v +4) +
B(2?+22)+Cx = (A+ B)2? + (4A+2B+C)x +4A = 62 + 8.
The easiest thing to solve for is A = 2 = B = —2, plugging
these into the middle term gives, C' = —4. Now we put these
into the integra,

6z + 8 2 2 2 2
——=dz = - — dz =21 —21 2l ———+C.
/:):(x+2)2 v /(:c x+2+(x+2)2> . nle] nle+2| 30—i—2+

(b) We solve this via integration by parts with v = z = du = dz
and dv = sec? zdz = v = tanx,

/xsechrdw:xtanx—/tan:cdx:wtanaf—i—ln\cosx]—i-C.

Recall, we solve [tanadz by breaking it up into sin and cos

and using u-sub.
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(3) (a) This is another partial fractions problem,

x2+2x+3_é+B3¢+C
r(x2+1)  x  22+1°

From this we get Az + A+ B2?+Czx = (A+B)2? 4+ Co+ A=
22 + 22 + 3. Then we solve for the coefficients A = 3,C =2 =
B = —2, and integrate

2+ 27 +3 3 2 2
/ z(z? +1) o /<x+1+x2 x2+1) x n|z|+2tan” x —Injz° + 1| +

(b) This is a typical u-sub problem with u = v/ = du = 1/2/zdx,

/Cosﬁdx:2/cosudu:2sin\/5+0.
NG
2

(4) (a) This is a trig integral problem where we convert sin® z,

I = /sin3  cos? xdx = /(1 — cos? z) cos?  sin xd.

Now, we use u-sub with u = cosx = du = —sinxdx,
1 1 1 1
I= /(u4 —u?)du = gug’ - §u3 = gcos5:c - gcos3x+C.

(b) This is a trig-sub problem where 2 = sin§ = dx = cos #d#,

sin? 6 cos @ / sin? @ cos
cos 0

/ x2dx _/ 40 —
V1— 2?2 V1 —sin?0

0 1 1 1 1 1
:i—zsin29+6’:isin_lx—§sin00089+C’:isin_lx—ix\/l—xQJrC.

1
d6 = /sm2 60 — /5(1 — c0s20)dd

(5) The next two are improper integral problems.
(a) Here we first take the limit and then apply our u-sub of u =

—x _ dz
tan :>dU—1+x2,

1
dz = lim dz = lim udu = lim — = lim = (tan"'¢)?

_ _ -1 -1
/OO tan~1 z ttan~ 1z tan™ " ¢ w2t
o 1422 t—oo Jo 14 22 t—o0 Jp t—oo 2
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(b) Again, we first include the limit then we use “by parts” using
u=1Inz = du=dz/z and dv = 2?dz = v = 23/3,

2

2 2 1
/ 22 Inzdz = lim 22 Inzdz = lim l:v?’ Inz
0 t—0 J¢ t—0 |3

21 8 1 1 .12

_ ~ 2 _ 1 ° 1.3 4.3

t /t3ac dx] %g%{glrd 3t Int gxt
3

= lim §ln2—§—i—t——1t31nt :§ln2—§.

t—0 |3 9 9 3 3 9

We get this by employing

1
lim#3Int = limL =lim —— = 0.
t—0 t—0t=3  t50 —3t—3

(6) Remember the standard forms of these series!
(a) We go straight to ratio test,

)2 (2n)! 1+1/n)?
lim ntl| _ (n+1) (n) :lm‘ (1+1/n) =0<1.
t—oo | ap t—oo | (2n+2)!  n? t—oo | (2n +2)(2n + 1)
Hence, it converges.
(b) This looks like it diverges pretty badly so we just take the limit
of the “n™” term,
: 1/n _
Jim 2 14 0.
Hence, it diverges.
(c) The easiest thing to do here is use limit comparison,
14+3™")/(1+4" 143" 47 14+ 127
lim(+ )/(A+ >zlim i - — = lim i =1
t—00 3”/4" t—oo 1 +4n  3n t—oo 1 4+ 127

So, this is a valid comparison. Since > 2 ;(3/4)" converges
by the geometric series because 3/4 < 1, therefore > >, %iiz
converges by the limit comparison test.

(d) We can do this one by direct comparison, but if you're not

sure you should just use limit comparison. Notice that X%t <

3n2+4 —
3% = ?,7%/2 Since % S2%° | 1/n3/2 converges by p-series because

T

p>1,>>, ﬁ converges by the direct comparison test.




(7) As per usual we first employ the ratio test,

— 2)ntl 1 1 141
T L 1 C ) A ) U YA e oY TR YRS PR e v L O T PP
t—oo | ap t—oo | +/n+ 2 (x =2)" t—oo \| n+ 2 t~>oo 1+2/n

Since we need |x — 2| < 1 by the ratio test, the radius of conver-
gence is R = 1, and the interval of absolute convergence is 1 < x < 3.
Now we must test the end points. When x = 1, our series becomes

> 1/v/n+1 =300 51/y/n diverges by p-series because p < 1.
When = = 3, our series becomes > o2 ;(—1)"/y/n + 1. We first take
the limit of the n'" term, lim; ,o, 1/v/n + 1 = 0. Next we show that
it’s decreasing, 1/y/n + 1 > 1/4/n + 2. Therefore, by the alternating
series test, it converges. So, our interval of convergence is 1 < x < 3.

(8) Notice that f(m/4) = V/2/2, f'(x/4) = —v/2/2, f"(7/4) = —/2/2

and hence
V2 V2 Ty V2 m\?
f@)r ————(z—=)|——(2xz——) .
2 2 4 4 4
(9) Recall that the series for exponentials about x = 0is e® = Y 02 ;2" /nl.

(a) Now we just plug in —z° and multiply out by =,

5 [e's) ( n 5n 00 n 5n+1
re ¥ =x Z =z Z = Z
n=0 n=0

(b) Now we integrate term by term,

0.1 0.1 —_1)" Sn+1 oo 0.1 1" n+1 oo n 5n+2 0.1
/ $€_w5dx=/ Z( )5'17 :Z/ (- ) :Z '
0 (U — n: n=0"0 n=0 57’L + 2 n 0
GG o e
—=  (5n+2)n! —=  (n+2)n!

(c) We see here that the exponential gets large very quickly and that
it’s an alternating series. The error for an alternating series is
just the next term from the truncation, so lets just compute
each term and find where it gives us the desired error and then
just take all the terms up to but not including that term,

1077 10~

= =1:——-- =2:
=g " 7 " 24

Therefore the following is correct up to 1078,

<1078,



(10) We have to find the points at which these two curves intersect,

2cosf) =1 = 0 = 7w/3,—m/3. Notice that we want the interval
—7/3 < 6 < 7/3 because as hypothesized by the problem, 2cos#é
is larger in that region. Now we just plug into our formula and
integrate,

w/3
}/ (4(30329—1)(19:/ (1 + cos20)dd — — — 0+ —sin20 — — _ Vs
2 —7/3 2

(11

) Lets first find the respective derivatives,

—7/3 2 —7/3 2 —7/3 2

dy 1 dr  1+t—-t 1

At~ 1+t dt (14062 (1+t)2
Therefore, dy/dx = 1 + t, and in the same vein

d2y/da? = dy' /dz = L5 = (14 1)2,




FALL 2011 SOLUTIONS
(1) First lets calculate the respective derivatives, dz/dt = —2costsint =
—sin 2t and dy/dt = 2sint cost = sin 2¢.
(a) We plug into our arc length formula,

—V2 2
;fco 2t]7r/4 \2[

w/4 w/4
L= / V2sin? 2tdt = V2 / sin 2tdt =
0 0

(b) We plug into the surface area formula,

/4 /4 /4
SA = / 27 sin? tv/2 sin 2tdt = 77\/5/ (1 — cos2t)sin 2tdt = ﬂ'ﬁ/ (sin 2t — cos 2t sin 2¢)d
0 0
V2 J’ g _V2 V2 V2
tlo ST "=

/4 1
=7V2 l cos 2t|7r/4 / 3 sin 4tdt] 57 + — 1
0

(2) Lets convert this to cartesian coordinates © = rcos = 4sinf cosf =

2sin 20 and y = rsinf = 4sin? 4.
(a) Now lets find the respective derivatives, dy/df = 8sinf cosf =

4sin 260 and dz/df = 4 cos 26, then we get

dy __V3

3,

sin 20

=r/3 cos 26 0=m/3

(b) To find the area we notice that the bounds will be § = 0 and

0=,

= 1/ 16 sin® ) = 4/ (1 — cos20)df = 40 — 2sin 0|7 = 4.
0

(3) (a) This is a typical partial fractions problem,

4r +1 —é—i- B n C
zz+1)2 z x+1 (z+1)%

This gives, A(x +1)? + Bz(z + 1) + Cz = A(z? + 22 + 1) +
B> +2)+Czx=(A+B)2?+ (2A+B+C)z + A =4z + 1,
which gives A =1, B = —1,C = 3. Then the integral becomes,

3
Injz+1] - —— +C.

4 1 1 1
/de:/< + 5 >dx:1n|1:]
x(z+1)2 r z+1 (z+1)? x+1




(b) This is a typical trig-sub problem, where x = 2sinf = dz =

2 cos #d0,
/ dx _/ 2 cos 6dd _/ 2cos 6 40 — do
(4—2)3/2 ) (4—4sin20)32 ) (2cos0)3 " J 4cos?d
_ 1 9 _ 1 _ x
= 4/S€C 0do = 4tan9—74m+0.

(4) (a) This is a typical partial fractions problem, but we already did
the partial fractions in 3a from Spring 2011 so we go straight
to the coefficients: (A + B)a? + Cz + A = 3z — 1, so we get
A=-1,B=1,C = 3. Now we integrate,

3r—1 x 3 1 1
=~ dz= —~)dz==In|z®+ 1|+ 3tan" 'z —1 C.
/:c(a:2+1) v /(9:2+1+x2+1 az) 1T nlo”+ 1+ 3tan e — Infe| +

(b) We use by parts with v = Inx = du = dz/r and dv =
zY2dz = v = 22Y/2,

ln\/;dx = /x_l/zlnxdx =2v2Inz — 2/ \d/a;? =2yxlnz — 4z + C.
Notice that I did not include absolute values here, because ab-
solute values would make it incorrect.

(5) Both of these are improper integrals.

(a) We already did the u-sub in problem 3b Spring 2011, we will
skip that step,

1 1
/ CcOS ﬁd:ﬂ — lim COoS \/Edl‘ _ %H%QSID \/Eﬁ — 25111(1) — 711H(1)2SIH\/7E = ZSiD(l)-
0 - -

VT t=0Jy  x

(b) We integrate this by parts with u = z = du = dz and dv =
e fdr=v=—e"

e’} t t
/ ze *dx = lim ze *dxr = lim [—xe_x]g —I—/ e_xdx}
0 0

t—oo Jo t—o0

= lim [—ze ® — e_x]g =liml—tet—et=1

t—00 t—o0
We get this by employing,
t 1
lim te”! = lim — = lim — = 0.

t—o0 t—oo el t—oco e



(6) We use disks to get V = 7rf01 (1;1%)2. Then we use trig-sub with
x = tanf = dz = sec? 0db,

w/4 2 w/4 2 w/4
V:ﬂ'/ (secﬁd@ 7T/ See Hdﬁzw/ cos? 6d6
0 0 0

1+ tan? 6)2 - sect 0
m/4q T 1 . A rrr 1
—77/0 2(1—1—0052«9)d9—2{0+2sm29}0 —2[44—2}

gain, remember the standard forms of series.
7) Agai ber the standard f { seri
(a) This is a typical limit comparison problem. Lets compare to

1/n,
o (n+1)/Vot+d o nAl _n4+n . 1+1/n
lim = lim —— n=lim —— = lim ——— =
n—00 1/n n—00 4/n4 +4 n—00 4/n4 + 4 n—00 1+ 4/n

So, this is a valid comparison. Since Y oo, 1/n diverges by p-
series because p = 1, >0 | (n+1)/v/n* + 4 diverges by the limit
comparison test.

(b) We can use direct comparison for this. Notice 1/(e” + 1) <
1/e™, and since > 72, 1/e™ converges by geometric series be-
cause 1/e < 1, >7°,1/(e™+1) converges by the direct compar-

ison test.
(c) We can tell this diverges so lets just take the limit of the “n'h”
term,
2" 450 (2/5)"+1
A e e a1 L7
And therefore it diverges.
(8) As per usual we apply ratio test,
3t (g — 1)nt! 3 3lr—1
lim |27 = lim (=D __n S N LU TR T Lt

By the ratio test this needs to be less than 1 to converge absolutely,
hence we require |z — 1| < 1/3, i.e. the radius of convergence is R =
1/3. So the interval of absolute convergence is 2/3 < z < 4/3. Now
we test the end points. For x = 4/3 our series becomes Y o>, 1/n
which diverges by p-series because p = 1. For x = 2/3 we get

o2 1(—1)"/n, which is an alternating series. We first take the limit
of the “nth” term, lim, o, 1/n = 0. Next we show it’s decreasing,
1/n > 1/(n+1). Therefore, the series converges by the alternating
series test. This gives an interval of convergence of 2/3 < x < 4/3.

= 3|z — 1].



2n

(9) We know the Taylor series of cosz = Z;’f’:o(—l)"%.

(a) Plugging in 22 and multiplying through by z gives,

) o " l.4n o nx4n+1
reosxt =x Z(—l) o)l = Z(—l) o
n=0 ’ n=0 ’

(b) We take one more term than the z° term and take the limit,

5 9
. wcos(z? —x) (CL"—%%—%%-'--)—I‘ R Ty NI |
lim ————= = lim = 2 24 ' @ _ )
z—0 35 z—0 35 z—0 35 6
(10) (a) Notice f("(2) = €2, so we get,

2 2

e’ ~e? +e(x—2)+ %(:p —2)2 4 %(az —2)3.

(b) For the erorr we apply the Taylor remainder formula and we
notice |(z — 2)*| < 1 in our interval.

M
Rl < |3yt — 2] <




