
Math 112 - 018 Rahman Final Week (Chapter 11)

11.1 Parametrizations of Plane Curves

For parametric curves we think of a little creature on a 1-D curve or equivalently
a bead on a wire. We denote these curves as x = f(t) and y = g(t) i.e. x and y as
functions of t where we can think of t as the time the creature spends moving.

Ex: Consider x = t2 − 2t, y = t + 1. We can convert this into x as a function
of y, but now we have to be careful. When we do this we make sure that
we adhere to the domain of t not y, so the domain of y must be restricted
by the domain of t. We convert this by noting t = y − 1, and plugging in
to the formula for x, x = y2 − 4y + 3. We can sketch this, but we have to
make sure we include the directions arrows. We can think of these arrows
as the direction the creature is moving on the curve.

Many times we put restrictions on t, such as a ≤ t ≤ b and (f(a), f(b)) is called
initial point and (f(b), g(b)) is the terminal point.

(1) Consider x = cos t, y = sin t, 0 ≤ t ≤ 2π. We directly identify this as a
circle. Notice that x2 + y2 = 1 and the direction of movement is counter-
clockwise. What about x = cos 2t, sin 2t? In that case we go around twice.

(2) Consider x = sin t, y = sin2 t. Notice that y = x2 and |x| ≤ 1, but this
curve goes back and forth on this line because sin t is a periodic function,
so the arrows must be in both directions.

(3) Consider x = cos 2t, y = sin2 t. This gives y = 1
2 −

1
2 cos 2t = 1

2 −
x
2 .

Know what Cardioids are.

Calculus with parametric curves and Applications

One thing we would like to do with parametric curves is find the slope at any
point. It’s quite easy to derive these:

y′ =
dy

dx
=

dy/dt

dx/dt
=
g′(t)

f ′(t)
;

dx

dt
6= 0. (1)

We can also calculate the second derivative:

d2y

dx2
=

dy′/dt

dx/dt
=
g′(t)/f ′(t)

f ′(t)
=

g′(t)

f ′(t)2
;

dx

dt
6= 0. (2)

(1) A curve C is defined by x = t2, y = t3 − 3t.
(a) Show the curve has two tangent lines at (3, 0).
(b) At what points are the tangent lines horizontal/vertical?
(c) Where is the curve concave up/down?
(d) Sketch (this was done in class).
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(a) Solution: We notice that a 1-D curve can have two tangent lines only
if it crosses itself in a transverse manner. This means there are two
such times t where (x, y) = (3, 0), so lets solve for this.

y = t3 − 3t = t(t2 − 3) = 0⇒ t = 0,±
√

3,

x = t2 = 3⇒ t = ±
√

3.

Therefore, (x, y) = (3, 0) when t = ±
√

3 i.e. two different ts, and
hence has two tangent lines.

(b) Solution: For the horizontal and vertical tangent lines lets equate the
respective time derivative of x and y to zero.

dy

dt
= 3t2 − 3 = 0⇒ t = ±1,

dx

dt
= 2t = 0⇒ t = 0.

Since there are no repeats we can say that the horizontal tangent lines
occur at t = ±1 which means (1,−2) and (1, 2) and the vertical tangent
line occurs at t = 0 which means (0, 0).

(c) Solution: For the concavity we compute the second derivative,
d2y
dx2 = 3(t2+1)

4t3 , so the curve is concave up for t > 0 and concave down
for t < 0.

(2) Consider x = r(θ − sin θ), y = r(1− cos θ).
(a) Find the equation of the tangent line at θ = π/3.
(b) At what points are the tangent lines horizontal/vertical?
(c) Find the area for the curve for θ ∈ [0, 2π].
(a) Solution: This is exactly like solving for the equation of a tangent

line from Calc I, except we have a slightly different way of calculating
the derivative. Lets go ahead and calculate the derivative,

dy

dx
=

r sin θ

r − r cos θ
=

sin θ

1− cos θ
.

Then, at y′(π/3) =
√

3. Now we must find the respective x and y,

which are x(π/3) = r(π/3 −
√

3/2), y(π/3) = r/2. Now we plug this
into the point slope form of the equation of a line,

y − y0 = m(x− x0)⇒ y − r

2
=
√

3

(
x−

(
π

3
−
√

3

2

)
r

)
.



(b) Solution: To find the horizontal and vertical points we equate the
relative derivatives to zero,

dy

dθ
= r sin θ = 0⇒ θ = nπ,

dx

dθ
= r(1− cos θ) = 0⇒ θ = 2nπ.

Hence we get horizontal derivatives for every odd nπ i.e. (2n − 1)π.
Now for the even nπ both derivatives are zero, so we must take the
limit,

dy

dx

∣∣∣∣
θ=nπ

= lim
θ→nπ

sin θ

1− cos θ
=∞.

So, these are the vertical points. That means we get horizontal tan-
gents at ((2n− 1)πr, 2r) and vertical tangents at (2nπr, 0).

(c) Solution: For the area lets not worry about the limits until we get to
the parametric form. We start off with the usual integral and derive
the parametric integral,

∫
ydx

∫ 2π

0

y(θ)
dx

dθ
dθ =

∫ 2π

0

r(1− cos θ)r(1− cos θ)dθ = r2
∫ 2π

0

(1− 2 cos θ + cos2 θ)dθ

= r2
∫ 2π

0

[
1− 2 cos θ +

1

2
(1 + cos 2θ)

]
dθ = r2

[
3

2
θ − 2 sin θ +

1

4
sin 2θ

]2π
0

= 3πr2.

If we recall, when we first learned arc length and surface area we derived our
formulas through parametrization. At the time I said we didn’t have to worry about
it, but now this really comes into play. Since we already derived it I shall simply
provide the formulas for arc length and surface area respectively,

L =

∫ β

α

√(
dx

dt

)2

+

(
dy

dt

)2

dt =

∫ β

α

√
f ′(t)2 + g′(t)2dt. (3)

SA =

∫ β

α

2πy

√(
dx

dt

)2

+

(
dy

dt

)2

dt Revolution about x-axis (4)

SA =

∫ β

α

2πx

√(
dx

dt

)2

+

(
dy

dt

)2

dt Revolution about y-axis (5)

(1) Find the arc length of x = cos t, y = sin t from t = 0 to t = 2π.
Solution: We first take the derivatives, dx/dt = − sin t and dy/dt = cos t,
then we plug into our formula,

L =

∫ 2π

0

√
sin2 t+ cos2 tdt =

∫ 2π

0

dt = 2π.



(2) Find the arc length of x = r(θ−sin θ), y = r(1−cos θ) from t = 0 to t = 2π.
Solution: Here we have the same procedure to get,

L =

∫ 2π

0

√
r2(1− cos θ)2 + r2 sin2 θdθ = r

∫ 2π

0

√
2(1− cos θ)dθ

= r

∫ 2π

0

√
2(2 sin2 θ/2)dθ = 2r

∫ 2π

0

sin
θ

2
dθ = 2r

[
−2 cos

θ

2

]2π
0

= 8r.

(3) Show that the surface area of a sphere of radius r is 4πr2.
Solution: We can rotate the semicircle x = r cos t, y = r sin t about the
x-axis, hence

SA =

∫ π

0

2πr sin t
√

(−r sin t)2 + (r cos t)2dt = 2πr2
∫ π

0

sin tdt = −2πr2 cos t|π0 = 4πr2.

11.3 and 11.4 Polar Coordinates and Sketching

For polar coordinates r is the distance from the origin and θ is the angle from
the x-axis. The ordered pairs are denoted (r, θ) and x = r cos θ, y = r sin θ, which
means r2 = x2 + y2 and θ = tan−1(y/x).

Ex: We plotted the following points in class:
a) (1, 5π/4) b) (2, 3π) c) (2,−2π/3) d) (−3, 3π/4).

Ex: Convert (2, π/3) from Polar to Cartesian coordinates. Plugging these quan-

tities into the formulas gives (1,
√

3).
Ex: Convert (1,−1) from Cartesian to Polar coordinates. Plugging these quan-

tities into the formulas gives (
√

2,−π/4).

The main thing we will do with Polar coordinates is sketching and analyzing
polar functions. A polar function is a function of the form r = f(θ) i.e. how the
radius changes as a function of the angle.

We sketched r = 2 cos θ, r = 1 + sin θ, and r = cos 2θ in class. Refer to the link
that I sent. I’ll try and remember to send the link again with this email.

Ex: Consider r = 1 + sin θ, 0 ≤ θ ≤ 2π.
(a) Find the slope of the tangent line at θ = π/3,
(b) Find the points where the tangent lines are horizontal/vertical.
(a) Solution: We must compute dy/dx in the usual manner from last

section,

dy

dx
=

cos θ sin θ + (1 + sin θ) cos θ

cos θ cos θ − (1 + sin θ) sin θ
=

cos θ(1 + 2 sin θ)

1− 2 sin2 θ − sin θ
=

cos θ(1 + 2 sin θ)

(1 + sin θ)(1− 2 sin θ)
.

Plugging in θ = π/3 gives dy/dx = −1.



(b) Solution: We compute the respective derivatives and equate them to
zero,

dy

dθ
= cos θ(1 + 2 sin θ) = 0⇒ θ =

π

2
,

3π

2
,

7π

6
,

11π

6
.

dx

dθ
= (1 + sin θ)(1− 2 sin θ) = 0⇒ θ =

3π

2
,
π

6
,

5π

6
.

We can make conclusions about all the points except for the duplicate.
For the duplicate we must take the limit

lim
θ→ 3π

2
−

dy

dx
= − lim

θ→ 3π
2

+

dy

dx
=∞

So, the horizontal points correspond to θ = π/2, 7π/6, 11π/6 and the
vertical points correspond to θ = π/6, 5π/6, 3π/2.

11.5 Areas and Lengths in Polar coordinates

We know the area of a sector is A = r2θ/2, so if r = f(θ) the area of a wedge in
a polar curve will be,

A =

∫ β

α

1

2
r2dθ =

∫ β

α

1

2
f(θ)2dθ. (6)

We can derive the arc length in the usual manner, but it does get very tedious,
so one should go straight to the formula,

L =

∫ β

α

√
r2 +

(
dr

dθ

)2

dθ. (7)

(1) Find the area enclosed by r = cos 2θ and the x-axis.
Solution: We plug this straight into the formula,

A =
1

2

∫ π/4

−π/4
cos2 2θdθ =

∫ π/4

0

cos2 2θdθ =

∫ π/4

0

1

2
(1+cos 4θ)dθ =

1

2

[
θ +

1

4
sin 4θ

]π/4
0

=
π

8
.

(2) Find the area inside r = 3 sin θ and outside r = 1 + sin θ.
Solution: The first thing we have to do is find where they intersect so that
we can figure out our limits,

3 sin θ = 1 + sin θ ⇒ sin θ =
1

2
⇒ θ =

π

6
,

5π

6
.

Then, we plug into our formula,

A =
1

2

∫ 5π/6

π/6

[(3 sin θ)2 − (1 + sin θ)2]dθ =
1

2

∫ 5π/6

π/6

(8 sin2 θ − 1− 2 sin θ)dθ

=
1

2

∫ 5π/6

π/6

(3− 4 cos 2θ − 2 sin θ)dθ =
1

2
[θ − 2 sin 2θ + 2 cos θ]

5π/6
π/6 = π.



(3) Find the length of r = 1 + sin θ for 0 ≤ θ ≤ 2π.
Solution: We plug in to our formula to get,

L =

∫ 2π

0

√
1 + 2 sin θ + sin2 θ + cos2 θdθ =

∫ 2π

0

√
2 + 2 sin θ

√
2− 2 sin θ

2− 2 sin θ
dθ

=

∫ 2π

0

√
4− 4 sin2 θ√
2− 2 sin θ

dθ =

∫ 2π

0

2 cos θdθ√
2− 2 sin θ

.

Now this is an improper integral at θ = π/2, so we would need to take
limits. Assuming we do this our final answer should be 8.


