
Math 112 - 018 Rahman Week3

7.3 Hyperbolic Functions

Hyperbolic functions are similar to trigonometric functions, and have the follow-
ing definitions:

• sinhx = 1
2 (ex − e−x)

• coshx = 1
2 (ex + e−x)

• tanhx = sinh x
cosh x

• cschx = 1/ sinhx
• sechx = 1/ coshx
• cothx = 1/ tanhx

It’s also useful to know what they look like

To remember what they look like, just use the definitions and recall what the
exponential functions look like and take the average. If you’re confused as to what
I’m talking about make sure to ask me to explain it.

They are subject to the following identities:

• sinh(−x) = − sinhx
• cosh(−x) = coshx
• cosh2 x− sinh2 x = 1
• 1− tanh2 x = sech2x
• sinh(x+ y) = sinhx cosh y + coshx sinh y
• cosh(x+ y) = coshx cosh y + sinhx sinh y
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We can prove some of these things, so we may get a better understanding of the
identities. Proofs are important, even for engineers!

Theorem 1. cosh2 x− sinh2 x = 1.

Proof. We go straight to the definition,

cosh2 x− sinh2 x =

[
1

2
(ex + e−x)

]2
−
[

1

2
(ex − e−x)

]2
=

1

4
(e2x + 2 + e−2x)− 1

4
(e2x − 2 + e−2x) = 1

�

Theorem 2. 1− tanh2 x = sech2x

Proof. Here we simply divide the entire equation by cosh2 x,

[
cosh2 x− sinh2 x = 1

] 1

cosh2 x
⇒ 1− tanh2 x = sech2x.

The other identities are proved similar to this one. If you have time, you should
try to prove the other identities by yourselves. Even though they wont appear on
exams they will help you get a better understanding of the concepts.

�

Here is a nice proof of one of the most important trigonometric identities, and
all other identities can be very easily derived through these identities in a similar
fashion to the above theorem.

Theorem 3. sin2 θ + cos2 θ = 1.

Proof. Consider a right triangle and one non-right angle θ. Let the side opposite
to θ be of length x, the side adjacent to θ be of length y, and the hypotenuse z.
Then, sin θ = x/z and cos θ = y/z, and by the Pythagorean theorem x2 + y2 = z2,
then

sin2 θ + cos2 θ =
x2

z2
+
y2

z2
=
x2 + y2

z2
=
z2

z2
= 1.
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It is important to know the derivatives of hyperbolic functions as well,

• (sinhx)′ = coshx
• (coshx)′ = sinhx
• (tanhx)′ = sech2x
• (cschx)′ = −cschx cothx
• (sechx)′ = −sechx tanhx
• (cothx)′ = −csch2x

These can all be derived very easily from the definitions.

Ex: (cosh
√
x)′ = 1

2
√
x

(sinh(
√
x)).

We also have inverse hyperbolic functions, which are far less straightforward to
derive. However, the derivations of these functions are quite cute, so you should
try them. I will derive sinh−1 x here, and then just provide formulas for the rest.

Theorem 4. sinh−1 = ln(x+
√
x2 + 1).

Proof. We begin with the definition of y = sinhx. Recall in order to get the inverse
we solve for x.

1

2
(ex − e−x) = y ⇒ ex − e−x = 2y ⇒ ex − 2y − e−x = 0

If we multiply the equation through by ex we get,

e2x − 2yex − 1 = 0.

Notice, this is precisely the form of the quadratic polynomial: ax2 + bx+ c = 0,
so we can solve this via the quadratic formula,

ex =
1

2
(2y ±

√
4y2 + 4) = y ±

√
y2 + 1⇒ x = ln(y ±

√
y2 + 1).

Now, we choose the “+” branch because if we chose “-” the argument of the log
would be negative. �

The other ones are derived in a similar fashion, and you are encouraged to try
them out. While these sort of derivations will never appear on an exam, under-
standing the derivations will help you become a better engineer, programmer,etc.

• sinh−1 = ln(x+
√
x2 + 1)

• cosh−1 = ln(x+
√
x2 − 1);x ≥ 1

• tanh−1 = 1
2 ln

(
1+x
1−x

)
; |x| < 1

• coth−1 = 1
2 ln

(
1+x
1−x

)
; |x| > 1

• sech−1 = ln
(

1+
√
1−x2

x

)
; 0 < x ≤ 1

• csch−1 = ln
(

1
x +

√
1+x2

|x|

)
;x 6= 0



It is useful to know the derivatives of the inverses in order to solve various
integrals. Again, they aren’t the most straightforward to derive, but lets derive it
for sinh−1 x,

Theorem 5. d
dx sinh−1 x = 1√

1+x2

Proof. As usual, we start from the definition,

d

dx
sinh−1 x =

d

dx
ln(x+

√
x2 + 1) =

1 + 1
2 (x2 + 1)−1/2(2x)

x+ (x2 + 1)1/2

=
1 + x(x2 + 1)−1/2

x+ (x2 + 1)1/2
· (x2 + 1)1/2

(x2 + 1)1/2

=
(x2 + 1)1/2 + x

x+ (x2 + 1)1/2
· 1

(x2 + 1)1/2
=

1√
x2 + 1

.

�

The rest are,

• d
dx sinh−1 x = 1√

1+x2

• d
dx cosh−1 x = 1√

x2−1 ;x > 0

• d
dx tanh−1 x = 1

1−x2 ; |x| < 1

• d
dx coth−1 x = 1

1−x2 ; |x| > 1

• d
dx sech−1x = 1

x
√
1−x2

; 0 < x < 1

• d
dxcsch−1x = 1

|x|
√
1+x2

;x 6= 0



8.1 Integration by parts

The modern notion of integration by parts comes from a beautiful theory of
integrals by Riemann and Stieltjes in 1894, soon after which Stieltjes passed away.
The idea is we can integrate over certain functions instead of just over x. We can
think of it as a generalization of “u-sub”.

To derive it, consider the product rule,

d

dx
[f(x)g(x)] = f(x)g′(x) + g(x)f ′(x)⇒ d[f(x)g(x)] = f(x)g′(x)dx+ g(x)f ′(x)dx

⇒
∫

d[f(x)g(x)] = f(x)g(x) =

∫
f(x)g′(x)dx+

∫
g(x)f ′(x)dx

⇒
∫
f(x)g′(x)dx = f(x)g(x)−

∫
g(x)f ′(x)dx.

This can be written in the form, which we will use from now on

∫
udv = uv −

∫
vdu. (1)

(1) I =
∫
x sinxdx.

Solution: Let u = x⇒ du = dx and dv = sinx⇒ v = − cosx. Then,

I = −x cosx+

∫
cosxdx = −x cosx+ sinx+ C.

We see here that we generally choose the easiest thing to integrate as
dv. We can use ILATE: InverseLogsAlgebraicTrigonometricExponential, to
help determine which is easier to integrate. Things get easier to integrate
as we go to the right, for example, Exponentials are easier to integrate than
Trigonometric functions. But this doesn’t always work! So, only use it as
a guide, not a rule of thumb.

(2) I =
∫

lnxdx.

Solution: Let u = lnx⇒ du = 1
xdx and dv = dx⇒ v = x. Then,

I = x lnx−
∫
x

dx

x
= x lnx− x+ C.



(3) I =
∫
t2etdt.

Solution: Let u = t2 ⇒ du = 2tdt and dv = etdt⇒ v = et. Then,

I = t2et − 2

∫
tetdt.

Notice, we need to integrate by parts again for the second integral I2 =∫
tetdt. Let u = t⇒ du = dt and dv = etdt⇒ v = et. Then

I2 = tet −
∫
etdt = tet − et.

Plugging this back into I gives,

I = t2et − 2tet + 2et + C.

It may be appealing to do this sort of problem using “tabular integra-
tion”, however you should avoid using this “method”. If you make a mistake
using this “method”, you will lose a majority of the points. You are better
off doing integration by parts twice.

(4) I = ex sinxdx.
Solution: Let u = exdx⇒ du = etdt and dv = sinx⇒ v = − cosx. Then,

I = −ex cosx+

∫
ex cosxdx.

We must do another integration by parts on the second integral. Let u =
ex ⇒ du = exdx and dv = cosx⇒ v = sinx. Then,

I2 = ex sinx−
∫
ex sinxdx.

Plugging this into I gives,

I = ex sinx− ex cosx−
∫
ex sinxdx.

Now, we add both sides by
∫
ex sinxdx, to get

2

∫
ex sinxdx = ex sinx− ex cosx⇒

∫
ex sinxdx =

1

2
(ex sinx− ex cosx) + C.

Notice, for this problem it didn’t matter if you chose ex or sinx and cosx as
your u or dv. Try this problem the other way around to convince yourself
that it works both ways. And as usual, if you’re confused about what I’m
talking about, please make sure to ask me. It’s better to get questions
answered early on before you’re bombarded with new material.



(5) I =
∫ 1

0
tan−1 xdx.

Solution: Let u = tan−1 x⇒ dx
1+x2 and dv = dx⇒ v = x. Then,

I = x tan−1 x
∣∣1
0
−
∫ 1

0

xdx

1 + x2
.

The second integral is our usual u-sub integral where u = 1 + x2 ⇒ du =
2xdx. Then,

I2 =
1

2

∫ 2

1

du

u
=

1

2
lnu

∣∣∣∣2
1

= ln 2.

Plugging this back into I gives,

I = x tan−1 x

∣∣∣∣1
0

− 1

2
lnu

∣∣∣∣2
1

=
π

4
− 1

2
ln 2

(6) This next example is a test of our abilities to think abstractly. You wont
see this sort of thing on the exam, but you’ll see things on the exam that
use many of the tricks we will use on this example.
Find a reduction formula for I =

∫
sinn xdx.

Solution: Let u = sinn−1 x⇒ du = (n− 1) sinn−2 x cosxdx and
dv = sinxdx⇒ v = − cosx. Then,∫
sinn xdx = − cosx sinn−1 x+ (n− 1)

∫
sinn−2 x cos2 xdx

= − cosx sinn−1 x+ (n− 1)

∫
sinn−2 x(1− sin2 x)dx

= − cosx sinn−1 x+ (n− 1)

∫
sinn−2 x− (n− 1)

∫
sinn xdx

⇒ n sinn xdx = − cosx sinn−1 x+ (n− 1)

∫
sinn−2 xdx

⇒ sinn xdx = − 1

n
cosx sinn−1 x+

n− 1

n

∫
sinn−2 xdx.


