
Math 112 - 018 Rahman Week5

8.3 Trigonometric Substitutions

Lets begin with an example,

Ex: Consider
∫ √

1− x2dx.

Solution: This reminds us of the identity 1 − sin2 θ = cos2 θ, so lets use
the substitution x = sin θ ⇒ dx = cos θdθ.

∫ √
1− x2dx =

∫ √
1− sin2 θ cos θdθ =

∫ √
cos2 θ cos θdθ =

∫
cos2 θdθ

=
1

2

[
θ +

1

2
sin 2θ

]
+ C =

θ

2
+ sin θ cos θ =

1

2
sin−1 x+ x

√
1− x2.

The tricky part is going from θ to x. We see that since x = sin θ,

cos θ =
√

1− sin2 θ =
√

1− x2. We can also use our right triangles to help
us.

Let us employ a table of trig substitutions that will help us with the decision
making process.

Expression Substitution Identity

√
a2 − x2 x = a sin θ, −π/2 ≤ θ ≤ π/2 1− sin2 θ = cos2 θ

√
a2 + x2 x = a tan θ, −π/2 < θ < π/2 1 + tan2 θ = sec2 θ

√
x2 − a2 x = a sec θ, 0 ≤ θ < π/2, π ≤ θ < 3π/2 sec2 θ − 1 = tan2 θ

(1) I =
∫ √

9−x2

x2 dx.
Solution: This is of the form of the first case, so we use the substitution:
x = 3 sin θ ⇒ dx = 3 cos θdθ,

I =

∫ √
9− 9 sin2 θ

9 sin2 θ
3 cos θdθ =

∫
9 cos2 θ

9 sin2 θ
dθ =

∫
cot2 θdθ =

∫
(csc2 θ−1)dθ = − cot θ−θ+C.

Now we must plug back in for θ. Since x = 3 sin θ, sin θ = x/3, and we
recall that sine is opposite over hypotenuse and cotangent is adjacent over
opposite. We may denote the opposite side as x and the hypotenuse side
as 3, then by the Pythagorean theorem the adjacent side is

√
9− x2. This

gives us, cot θ =
√

9− x2/x, then

I = −
√

9− x2
x

− sin−1
(x

3

)
+ C

Note that we have to substitute back in only for indefinite integrals. For
definite integrals it’s easier to just change the limits.

1



(2) I =
∫

dx
x2
√
x2+4

.

Solution: This is of the form of the second case, so we substitute x =
2 tan θ ⇒ dx = 2 sec2 θdθ,

I =

∫
2 sec2 θdθ

4 tan2 θ
√

4 tan2 θ + 4
=

1

4

∫
sec θdθ

tan2 θ
=

1

4

∫
cos θdθ

sin2 θ
.

We solve this via u-sub with u = sin θ ⇒ du = cos θdθ.

I =
1

4

∫
du

u2
= − 1

4u
+ C = − 1

sin θ
+ C.

Since x = 2 tan θ, tan θ = x/2, so sin θ = x/
√
x2 + 4, then

I = −
√
x2 + 4

4x
+ C.

(3) I =
∫

xdx√
x2+4

.

Solution: Thought we had to use a trig substitution didn’t ya? NOPE!
U-Sub! Let u = x2 + 4⇒ du = 2xdx.

I =
1

2

∫
du√
u

=
√
u+ C =

√
x2 + 4 + C.

This shows us that if we take a few seconds to think about a problem
we can find a much easier solution.

(4) I =
∫

dx√
x2−a2 .

Solution: This is of the form of the third case, so we substitute x =
a sec θ ⇒ dx = a sec θ tan θ.

I =

∫
a sec θ tan θdθ√
a2 sec2 θ − a2

=

∫
a sec θ tan θdθ

a tan θ
=

∫
sec θdθ = ln | sec θ + tan θ|+ C.

Since x = a sec θ, sec θ = x/a, so tan θ =
√
x2 − a2/a, then

I = ln

∣∣∣∣∣xa +

√
x2 − a2
a

∣∣∣∣∣+ C.

Notice, a coshx is an equivalent answer, but the preferable method is
the way it was done here.



(5)
∫ 3
√
3/2

0
x3dx

(4x2+9)3/2
.

Solution: This is of the form of the second case, but here we have a
coefficient in front of the x term. We can either pull the 4 out and then
start our calculations or we can see what x has to be with the 4 there. It’s
much easier to come up with a substitution for x that produces a desired
result than to pull the coefficient out. Notice that we need the coefficient
in front of the tan2 term (after substitution of course) to be 9, so we have
that 4x2 = 9 tan2 θ, then x = (3/2) tan θ ⇒ dx = (3/2) sec2 θdθ.

I =

(
3

2

)4 ∫ π/3

0

tan3 θ sec2 θdθ

(9 tan2 θ + 9)3/2
=

(
3

2

)4 ∫ π/3

0

tan3 θ sec2 θdθ

33 sec3 θ
=

3

16

∫ π/3

0

tan3 θ

sec θ
dθ

=
3

16

∫ π/3

0

sin3 θ

cos2 θ
dθ =

3

16

∫ π/3

0

1− cos2 θ

cos θ
sin θdθ

This is our usual trig integral where u = cos θ ⇒ du = − sin θdθ,

I = − 3

16

∫ 1/2

1

1− u2

u2
du =

3

16

[
u+

1

u

]1/2
1

=
3

32
.

(6) I =
∫

xdx√
3−2x−x2

.

Solution: This one is going to take a bit of ingenuity. Lets tinker with
3 − 2x − x2 = 3 − (x2 + 2x). Notice we can get a perfect square if we
add a 1 to x2 + 2x, but if we add a 1 we must also “subtract” a 1, so
3−2x−x2 = 3−(x2+2x+1)+1 = 4−(x+1)2. Now, let u = x+1⇒ du = dx,
then

I =

∫
(u− 1)du√

4− u2
.

This is precisely the form of the first case, so we substitute u = 2 sin θ ⇒
du = 2 cos θdθ.∫

2 sin θ − 1√
4− 4 sin2 θ

2 cos θdθ =

∫
2 sin θ − 1

2 cos θ
2 cos θdθ = −2 cos θ − θ + C

Since u = 2 sin θ, sin θ = u/2, then 2 cos θ =
√

4− u2, so

I = −
√

4− u2 − sin−1
(u

2

)
+ C =

√
3− 2x− x2 − sin−1

(
x+ 1

2

)
+ C.


