8.3 TRIGONOMETRIC SUBSTITUTIONS

Lets begin with an example,

Ex: Consider $\int \sqrt{1 - x^2} dx$.

Solution: This reminds us of the identity $1 - \sin^2 \theta = \cos^2 \theta$, so lets use the substitution $x = \sin \theta \Rightarrow dx = \cos \theta d\theta$.

$$
\int \sqrt{1 - x^2} dx = \int \sqrt{1 - \sin^2 \theta} \cos \theta d\theta = \int \sqrt{\cos^2 \theta} \cos \theta d\theta = \int \cos^2 \theta d\theta
$$

$$
= \frac{1}{2} \left[\theta + \frac{1}{2} \sin 2\theta \right] + C = \frac{\theta}{2} + \sin \theta \cos \theta = \frac{1}{2} \sin^{-1} x + x\sqrt{1 - x^2}.
$$

The tricky part is going from θ to x. We see that since $x = \sin \theta$, $\cos \theta = \sqrt{1 - \sin^2 \theta} =$ \mathbf{g} $1-x^2$. We can also use our right triangles to help us.

Let us employ a table of trig substitutions that will help us with the decision making process.

(1) $I = \int \frac{\sqrt{9-x^2}}{x^2} dx$. Solution: This is of the form of the first case, so we use the substitution: $x = 3 \sin \theta \Rightarrow dx = 3 \cos \theta d\theta,$

$$
I = \int \frac{\sqrt{9 - 9\sin^2\theta}}{9\sin^2\theta} 3\cos\theta d\theta = \int \frac{9\cos^2\theta}{9\sin^2\theta} d\theta = \int \cot^2\theta d\theta = \int (\csc^2\theta - 1) d\theta = -\cot\theta - \theta + C.
$$

Now we must plug back in for θ . Since $x = 3 \sin \theta$, $\sin \theta = x/3$, and we recall that sine is opposite over hypotenuse and cotangent is adjacent over opposite. We may denote the opposite side as x and the hypotenuse side opposite. We may denote the opposite side as x and the hypotenuse side
as 3, then by the Pythagorean theorem the adjacent side is $\sqrt{9-x^2}$. This gives us, $\cot \theta =$ √ $9-x^2/x$, then

$$
I = -\frac{\sqrt{9 - x^2}}{x} - \sin^{-1}\left(\frac{x}{3}\right) + C
$$

Note that we have to substitute back in only for indefinite integrals. For definite integrals it's easier to just change the limits.

(2) $I = \int \frac{dx}{x^2 \sqrt{x^2 + 4}}$.

Solution: This is of the form of the second case, so we substitute $x =$ $2\tan\theta \Rightarrow dx = 2\sec^2\theta d\theta,$

$$
I = \int \frac{2\sec^2\theta \mathrm{d}\theta}{4\tan^2\theta \sqrt{4\tan^2\theta + 4}} = \frac{1}{4} \int \frac{\sec\theta \mathrm{d}\theta}{\tan^2\theta} = \frac{1}{4} \int \frac{\cos\theta \mathrm{d}\theta}{\sin^2\theta}.
$$

We solve this via u-sub with $u = \sin \theta \Rightarrow du = \cos \theta d\theta$.

$$
I = \frac{1}{4} \int \frac{du}{u^2} = -\frac{1}{4u} + C = -\frac{1}{\sin \theta} + C.
$$

Since $x = 2 \tan \theta$, $\tan \theta = x/2$, so $\sin \theta = x/\sqrt{x^2 + 4}$, then

$$
I = -\frac{\sqrt{x^2 + 4}}{4x} + C.
$$

(3) $I = \int \frac{x dx}{\sqrt{x^2 + 4}}$.

Solution: Thought we had to use a trig substitution didn't ya? NOPE! U-Sub! Let $u = x^2 + 4 \Rightarrow du = 2x dx$.

$$
I = \frac{1}{2} \int \frac{du}{\sqrt{u}} = \sqrt{u} + C = \sqrt{x^2 + 4} + C.
$$

This shows us that if we take a few seconds to think about a problem we can find a much easier solution.

(4) $I = \int \frac{dx}{\sqrt{x^2 - a^2}}$. **Solution:** This is of the form of the third case, so we substitute $x =$ $a \sec \theta \Rightarrow dx = a \sec \theta \tan \theta.$

$$
I = \int \frac{a \sec \theta \tan \theta d\theta}{\sqrt{a^2 \sec^2 \theta - a^2}} = \int \frac{a \sec \theta \tan \theta d\theta}{a \tan \theta} = \int \sec \theta d\theta = \ln|\sec \theta + \tan \theta| + C.
$$

Since $x = a \sec \theta$, $\sec \theta = x/a$, so $\tan \theta =$ √ $x^2 - a^2/a$, then

$$
I = \ln \left| \frac{x}{a} + \frac{\sqrt{x^2 - a^2}}{a} \right| + C.
$$

Notice, $a \cosh x$ is an equivalent answer, but the preferable method is the way it was done here.

(5) $\int_0^{3\sqrt{3}/2}$ $x^3\sqrt{3/2} \frac{x^3dx}{(4x^2+9)^{3/2}}.$

Solution: This is of the form of the second case, but here we have a coefficient in front of the x term. We can either pull the 4 out and then start our calculations or we can see what x has to be with the 4 there. It's much easier to come up with a substitution for x that produces a desired result than to pull the coefficient out. Notice that we need the coefficient in front of the $tan²$ term (after substitution of course) to be 9, so we have that $4x^2 = 9 \tan^2 \theta$, then $x = (3/2) \tan \theta \Rightarrow dx = (3/2) \sec^2 \theta d\theta$.

$$
I = \left(\frac{3}{2}\right)^4 \int_0^{\pi/3} \frac{\tan^3 \theta \sec^2 \theta d\theta}{(9 \tan^2 \theta + 9)^{3/2}} = \left(\frac{3}{2}\right)^4 \int_0^{\pi/3} \frac{\tan^3 \theta \sec^2 \theta d\theta}{3^3 \sec^3 \theta} = \frac{3}{16} \int_0^{\pi/3} \frac{\tan^3 \theta}{\sec \theta} d\theta
$$

$$
= \frac{3}{16} \int_0^{\pi/3} \frac{\sin^3 \theta}{\cos^2 \theta} d\theta = \frac{3}{16} \int_0^{\pi/3} \frac{1 - \cos^2 \theta}{\cos \theta} \sin \theta d\theta
$$

This is our usual trig integral where $u = \cos \theta \Rightarrow du = -\sin \theta d\theta$,

$$
I = -\frac{3}{16} \int_1^{1/2} \frac{1 - u^2}{u^2} du = \frac{3}{16} \left[u + \frac{1}{u} \right]_1^{1/2} = \frac{3}{32}.
$$

(6)
$$
I = \int \frac{x dx}{\sqrt{3 - 2x - x^2}}
$$
.

 $\sum_{i=1}^{n} \frac{3-2x-x^2}{\sqrt{3-2x-x^2}}$.
Solution: This one is going to take a bit of ingenuity. Lets tinker with $3 - 2x - x^2 = 3 - (x^2 + 2x)$. Notice we can get a perfect square if we add a 1 to $x^2 + 2x$, but if we add a 1 we must also "subtract" a 1, so $3-2x-x^2 = 3-(x^2+2x+1)+1 = 4-(x+1)^2$. Now, let $u = x+1 \Rightarrow du = dx$, then

$$
I = \int \frac{(u-1) \mathrm{d}u}{\sqrt{4 - u^2}}
$$

This is precisely the form of the first case, so we substitute $u = 2 \sin \theta \Rightarrow$ $du = 2 \cos \theta d\theta.$

.

$$
\int \frac{2\sin\theta - 1}{\sqrt{4 - 4\sin^2\theta}} 2\cos\theta d\theta = \int \frac{2\sin\theta - 1}{2\cos\theta} 2\cos\theta d\theta = -2\cos\theta - \theta + C
$$

Since $u = 2\sin\theta$, $\sin\theta = u/2$, then $2\cos\theta = \sqrt{4 - u^2}$, so

$$
I = -\sqrt{4 - u^2} - \sin^{-1}\left(\frac{u}{2}\right) + C = \sqrt{3 - 2x - x^2} - \sin^{-1}\left(\frac{x+1}{2}\right) + C.
$$