
Math 112 - 018 Rahman Week6

8.4 Integration of Rational Functions by Partial Fractions

Lets use the following example as motivation:

Ex: Consider I =
∫

x+5
x2+x−2dx.

Solution: Notice we can easily factor the denominator into x2 + x − 2 =
(x−1)(x+2). Then we know that this looks like the common denominator
of the sum of two fractions. Lets consider 1

x−1 + 1
x+2 = 2x+1

(x−1)(x+2) . This is

clearly not what we want, but this gives us an indication of the form of the
fractions, namely

x+ 5

x2 + x− 2
=

A

x− 1
+

B

x+ 2
=
B(x− 1) +A(x+ 2)

(x− 1)(x+ 2)
=

(A+B)x+ (2A−B)

x2 + x− 2
.

where A and B are some constants. Our task now is to solve for A
and B. We notice that we must equate the numerators, i.e. x + 5 =
(A+B)x+ (2A−B), so by matching the coefficients we get two equations:
A+B = 1 and 2A−B = 5. From the first equation we have B = 1−A. Then
plugging B into the second equation gives 2A−1+A = 3A−1 = 5⇒ A = 2.
Then, B = 1 − A = 1 − 2 = −1. Now, we can plug these back into the
fraction and put them back in the integral,

I =

∫
2dx

x− 1
−
∫

dx

x+ 2
= 2 ln |x− 1| − ln |x+ 2|+ C.

We digress slightly to do an example that does not involve partial fractions but
that involves long division - a skill that will be very important for many of these
types of problems,

Ex: I =
∫

x3+x
x−1 dx.

Solution: By long division we get,

x3 + x

x− 1
= x2 + x+ 2 +

2

x− 1
.

If you’re having trouble with long division please come see me, asap!
Then, putting this back into the integral gives,

∫
x3 + x

x− 1
=

∫ (
x2 + x+ 2 +

2

x− 1

)
dx =

1

3
x3 +

1

2
x2 + 2x+ 2 ln |x− 1|+ C.

Whenever the highest power in the numerator is greater than or equal
to the highest power in the denominator we must use long division. Once
it’s in a form we can use, we can go ahead and use partial fractions. We can split
the types of problems we will come across on the exam into four cases detailed
bellow.

From this point on we will consider integrals of the type:∫
f(x)dx; f(x) =

P (x)

Q(x)
, where P and Q are polynomials. (1)

1



Case 1.

Suppose Q is a product of distinct linear factors, i.e. Q = (a1x + b1)(a2x +
b2) · · · (akx+ bk). Then,

P (x)

Q(x)
=

A1

a1x+ b1
+

A2

a2x+ b2
+ · · ·+ Ak

akx+ bk
. (2)

(1) Convert x2+2x−1
2x3+3x2−2x into partial fractions.

Solution: First we factor out the denominator,

2x3 + 3x2 − 2x = x(2x− 1)(x+ 2).

Then,

x2 + 2x− 1

2x3 + 3x2 − 2x
=

x2 + 2x− 1

x(2x− 1)(x+ 2)
=
A

x
+

B

2x− 1
+

C

x+ 2

=
A(2x− 1)(x+ 2) +Bx(x+ 2) + Cx(2x− 1)

x(2x− 1)(x+ 2)

=
(2A+B + 2C)x2 + (3A+ 2B − C)x− 2A

2x3 + 3x2 − 2x
.

Now we equate the numerators to find our constants,

x2 + 2x− 1 = (2A+B + 2C)x2 + (3A+ 2B − C)x− 2A.

Matching the coefficients give us the following equations,

2A+B + 2C = 1

3A+ 2B − C = 2

2A = 1

The easiest one to solve for is A = 1/2. Plugging this into the first
equation gives, B + 2C = 0 ⇒ B = −2C. Plugging this into the second
equation gives, 3/2− 5C = 2⇒ −5C = 1/2⇒ C = −1/10⇒ B = 1/5.

(2) Convert 1
x2−a2 into partial fractions.

Solution:

1

x2 − a2
=

1

(x− a)(x+ a)
=

A

x− a
+

B

x+ a
=

(A+B)x+ (A−B)a

x2 − a2
.

Matching the coefficients gives us A+B = 0⇒ A = −B straight away.
Then we plug this into (A−B)a = 2Aa = 1⇒ A = 1/2a⇒ B = −1/2a.



Case 2.

Suppose Q is a product of linear factors, some of which are repeated. Then, the
repeated factors are of this form

P (x)

Q(x)
=

P (x)

(ax+ b)r
=

A1

ax+ b
+

A2

(ax+ b)2
+ · · ·+ Ar

(ax+ b)r
. (3)

(1) Convert x3−x+1
x2(x−1)3 into partial fractions.

Solution: For this problem we simply put it into partial fractions form
without finding the constants. Notice that the denominator is already in
factored form.

x3 − x+ 1

x2(x− 1)3
=
A1

x
+
A2

x2
+

B1

x− 1
+

B2

(x− 1)2
+

B3

(x− 1)3
.

(2) Convert x4−2x3+4x+1
x3−x2−x+1 into partial fractions.

Solution: Notice that we must use long division because the highest power
of the numerator is greater than the highest power of the denominator,

x4 − 2x3 + 4x+ 1

x3 − x2 − x+ 1
= x+ 1 +

4x

x3 − x2 − x+ 1
.

Now, we factor the denominator,

x3−x2−x+1 = x2(x−1)−(x−1) = (x−1)(x2−1) = (x−1)(x−1)(x+1) = (x−1)2(x+1).

Then,

4x

x3 − x2 − x+ 1
=

4x

(x− 1)2(x+ 1)
=

A

x− 1
+

B

(x− 1)2
+

C

x+ 1

=
A(x− 1)(x+ 1) +B(x+ 1) + C(x− 1)2

(x− 1)2(x+ 1)

=
(A+ C)x2 + (B − 2C)x+ (−A+B + C)

x3 − x2 − x+ 1
.

Equating the numerator gives,

4x = (A+ C)x2 + (B − 2C)x+ (−A+B + C)

Matching the coefficients gives,

A+ C = 0

B − 2C = 4

−A+B + C = 0.

From the first equation we get C = −A, then plugging into the third
equation gives C + B + C = B + 2C = 0 ⇒ B = −2C. Plugging this into
the second equation gives −2C − 2C = −4C = 4⇒ C = −1⇒ A = 1⇒
B = 2.



Case 3.

Suppose Q is a product of quadratic factors with no repeats, i.e. Q = (a1x
2 +

b1x+ c1)(a2x
2 + b2x+ c2) · · · (akx2 + bkx+ ck). Then,

P (x)

Q(x)
=

P (x)

(a1x2 + b1x+ c1)(a2x2 + b2x+ c2) · · · (akx2 + bkx+ ck)

=
A1x+B1

a1x2 + b1x+ c1
+

A2x+B2

a2x2 + b2x+ c2
+ · · ·+ Akx+Bk

akx2 + bkx+ ck
. (4)

(1) Convert x
(x−2)(x2+1)(x2+4) into partial fractions.

Solution: For this problem we simply put it into partial fractions form
without finding the constants. Notice that the denominator is already in
factored form.

x

(x− 2)(x2 + 1)(x2 + 4)
=

A

x− 2
+
Bx+ C

x2 + 1
+
Dx+ E

x2 + 4
.

(2) Convert 2x2−x+4
x3+x into partial fractions.

Solution: First we factor the denominator, x3 + x = x(x2 + 1). Now, we
put this into partial fractions form,

2x2 − x+ 4

x3 + x
=

2x2 − x+ 4

x(x2 + 1)
=
A

x
+
Bx+ C

x2 + 1
=
A(x2 + 1) +Bx2 + Cx

x(x2 + 1)
=

(A+B)x2 + Cx+A

x3 + x
.

Now, equating the numerators gives, 2x2−x+ 4 = (A+B)x2 +Cx+A.
We get that A = 4 and C = −1 straight away from matching the co-

efficients in front of x1 and x0. Now, from the x2 coefficient we have
A+B = 4 +B = 2⇒ B = −2.



Case 4.

Suppose Q is product of factors that include repeated quadratic factors. Then
the repeated quadratic factors will be of the form,

P (x)

Q(x)
=

P (x)

(ax2 + bx+ c)r
=

A1x+B1

ax2 + bx+ c
+

A2x+B2

(ax2 + bx+ c)2
+ · · ·+ Arx+Br

(ax2 + bx+ c)r
.

(5)

(1) Convert x3+x2+1
x(x−1)(x2+x+1)(x2+1)3 into partial fractions.

Solution: For this problem we simply put it into partial fractions form
without finding the constants. Notice that the denominator is already in
factored form.

x3 + x2 + 1

x(x− 1)(x2 + x+ 1)(x2 + 1)3
=
A

x
+

B

x− 1
+

Cx+D

x2 + x+ 1
+
E1x+ F1

x2 + 1
+
E2x+ F2

(x2 + 1)2
+
E3x+ F3

(x2 + 1)3
.

(2) Convert 1−x+2x2−x3

x(x2+1)2 into partial fractions.

Solution: Notice, the denominator is already factored, so we go right to it

1− x+ 2x2 − x3

x(x2 + 1)2
=
A

x
+
Bx+ C

x2 + 1
+

Dx+ E

(x2 + 1)2
=
A(x2 + 1)2 + (Bx+ C)x(x2 + 1) +Dx2 + Ex

x(x2 + 1)2

=
(A+B)x4 + Cx3 + (2A+B +D)x2 + (C + E)x+A

x(x2 + 1)2

Equating the numerators gives,

1− x+ 2x2 − x3 = (A+B)x4 + Cx3 + (2A+B +D)x2 + (C + E)x+A.

We get A = 1 for free, and from that we get A + B = 1 + B = 0
⇒ B = −1. We also get C = −1 for free, from which we get C + E =
−1 + E = −1 ⇒ E = 0. And finally we get 2A + B + D = 2 − 1 + D =
1 +D = 2⇒D = 1.



Problems not on the exam, but are important nonetheless.

(1) Solve
∫

4x2−3x+2
4x2−4x+3dx.

Solution: First and foremost we must use long division because the highest
power in the numerator is equal to the highest power in the denominator.
After doing long division we get,

4x2 − 3x+ 2

4x2 − 4x+ 3
= 1 +

x− 1

4x2 − 4x+ 3
.

Notice, 4x2 − 4x + 3 can not be factored because it’s discriminant is,
b2 − 4ac = 42 − 4(4)(3) = −32 < 0 (i.e. the thing under the radical in the
quadratic formula). Recall that we can only factor quadratic polynomials
whose discriminant is greater than or equal to zero.

It’s easy to integrate 1, so lets focus on integrating the second part, but
lets try to put it into a form that will allow us to use a u-sub.

I =

∫
x− 1

4x2 − 4x+ 3
dx =

∫
x− 1

(2x− 1)2 + 2
.

We get this by completing the square on 4x2 − 4x, that is

4x2 − 4x = 4(x2 − x) = 4

(
x2 − x+

1

4

)
− 1 = 4

(
x2 − 1

2

)2

− 1 = (2x2 − 1)− 1.

Now we use u-sub where u = 2x− 1⇒ du = 2dx. Then,

I =
1

4

∫
u− 1

u2 + 2
du =

1

4

∫
u

u2 + 2
du− 1

4

∫
1

u2 + 2
du

We know how to solve both integrals. In case you don’t, you must start
coming to office hours.

(2) Solve I =
∫ √

x+4
x dx.

Solution: Lets use the u-sub, u2 = x + 4 ⇒ 2udu = dx, plugging this in
gives,

I = 2

∫
u2du

u2 − 4
.

Now, we must use long division to get,

I = 2

∫ (
1 +

4

u2 − 4

)
du = 2u+ 2

∫
4

(u− 2)(u+ 2)
.

Now, we split 4/(u− 2)(u+ 2) into partial fractions,

4

(u− 2)(u+ 2)
=

A

u− 2
+

B

u+ 2
=
A(u+ 2) +B(u− 2)

(u− 2)(u+ 2)
=

(A+B)u+ 2(A−B)

(u− 2)(u+ 2)
.

Equating the numerators gives 4 = (A+B)u+ 2(A−B), then we have
that A + B = 0 → B = −A. We plug this into the second term to get,
2(A−B) = 2(A+A) = 4A = 4⇒ A = 1⇒ B = −1. After this point we
know how to solve the two integrals.



8.6 Numerical Integration

We derived three methods of solving integrals numerically in class.

Midpoint rule:∫ b

a

f(x)dx ≈ ∆x[f(x∗1)+f(x∗2)+ · · ·+f(x∗n)]; x∗i =
1

2
(xi +xi+1), ∆x =

b− a
n

(6)

Where n is the number of intervals or equivalently the number of “steps”.

Error bound: |EM | ≤
K(b− a)3

24n2
; |f ′′(ξ)| ≤ K, ξ ∈ [a, b]. (7)

Where |f ′′(ξ)| is just the maximum of the second derivative in [a, b].

Ex: Consider the integral I =
∫ 2

1
dx
x . We note that the exact value of this

integral is I = ln 2 ≈ .693147.
(a) Approximate the integral via Midpoint rule with n = 5 steps.

Solution: Here a = 1, b = 2, so ∆x = 1/5. Also, clearly xi = a+i∆x,
so x0 = a = 1, x1 = 1.2, x2 = 1.4, x3 = 1.6, x4 = 1.8, and x5 = b = 2,
so x∗1 = 1.1, x∗2 = 1.3, x∗3 = 1.5, x∗4 = 1.7, x∗5 = 1.9 Then plugging this
into the formula gives,

I ≈ 1

5

[
1

1.1
+

1

1.3
+

1

1.5
+

1

1.7
+

1

1.9

]
≈ .691908.

(b) Find the error bound for this approximation.
Solution: Notice that b − a = 1 and n = 5. Now, we must just find
K. To do this we take the second derivative f ′′(x) = 2/x3. We notice
that in [1, 2] this is greatest at ξ = 1, so f ′′(ξ) = 2. So, we choose
K = 2. Plugging these into the formula gives,

|EM | ≤
K(b− a)3

24n2
=

2 · 1
24 · 25

=
1

300
.

(c) Find the smallest n that guarantees |EM | ≤ .0001.
Solution: This is a far more interesting problem. We start with the
formula and put in the quantities we know,

K(b− a)3

24n2
=

1

12n2
≤ .0001⇒ n2 ≥ 1

.0012
⇒ n ≥ 1√

.0012
≈ 28.8

This gives us n = 29.

Trapezoid rule:∫ b

a

f(x)dx ≈ ∆x

2
[f(x0) + 2f(x1) + 2f(x2) + · · ·+ 2f(xn−1) + f(xn)]; (8)

∆x =
b− a
n

, xi = a+ i∆x.

Where n is the number of intervals or equivalently the number of “steps”.

Error bound: |ET | ≤
K(b− a)3

12n2
; |f ′′(ξ)| ≤ K, ξ ∈ [a, b]. (9)

Where |f ′′(ξ)| is just the maximum of the second derivative in [a, b].



Ex : Take the same integral as in the Midpoint rule example, and answer the
same exact questions.
(a) We already have the quantities we need from the Midpoint rule exam-

ple, so we just plug those quantities into the Trapezoid rule formula,

I ≈ 1

10

[
1 + 2

1

1.2
+ 2

1

1.4
+ 2

1

1.6
+ 2

1

1.8
+

1

2

]
≈ .695635.

(b) For the error bound the difference between trapezoid rule and midpoint
rule is a factor of 2, so plugging into the formula gives |ET | ≤ 1/150.

(c) We have the same quantities here as in the midpoint rule problem, so
we get n > 40.8⇒ n = 41.

Simpson’s rule:∫ b

a

f(x)dx ≈ ∆x

3
[f(x0) + 4f(x1) + 2f(x2) + · · ·+ 4f(xn−1) + f(xn)]; (10)

∆x =
b− a
n

, n ≥ 4and must be even.

Where n is the number of intervals or equivalently the number of “steps”.

Error bound: |ES | ≤
K(b− a)5

180n4
; |f (4)(ξ)| ≤ K, ξ ∈ [a, b]. (11)

Where |f (4)(ξ)| is just the maximum of the fourth derivative in [a, b].

Ex : Consider the same integral as the previous two examples.
(a) Approximate this integral with n = 10 steps.

Solution: Here, ∆x = 1/10, and x0 = 1, x1 = 1.1, x2 = 1.2, x3 = 1.3,
x4 = 1.4, x5 = 1.5, x6 = 1.6, x7 = 1.7, x8 = 1.8, x9 = 1.9, and
x10 = 2. Plugging these into the formula gives,

I ≈ 1

30

[
1 + 4

1

1.1
+ 2

1

1.2
+ 4

1

1.3
+ 2

1

1.4
+ 4

1

1.5
+ 2

1

1.6
+ 4

1

1.7
+ 2

1

1.8
+ 4

1

1.9
+

1

2

]
≈ .693150.

(b) Find the smallest n that guarantees |ES | ≤ .0001.
Solution: We have most of the quantities, so we must only look for
K. Taking the fourth derivative gives f (4)(x) = 24/x5. We see that
this is greatest at ξ = 1 for our interval, so f (4)(ξ) = 24, hence we
choose K = 24. Plugging these into the formula gives

|ES | ≤
24

180n4
≤ .0001⇒ n4 ≥ 24

180(.0001)
⇒ n ≥

(
24

180(.0001)

)1/4

≈ 6.04.

So, we have n = 8 because we need an even n.


