
Math 112 - 018 Rahman Week7

8.7 Improper Integrals

Improper integrals are integrals that may blow up. This poses a question, what
is infinity and how do we deal with it? Consider the following example

Ex:
∫∞
1

dx/x2. We know how to integrate this for a finite interval, so why don’t
we do that and then take the infinite limit.

∫ ∞
1

dx

x2
= lim
t→∞

∫ t

1

dx

x2
= lim
t→∞

−1

x

∣∣∣∣t
1

= lim
t→∞

1− 1

t
= 1.

We have two cases of improper integrals. One where the interval is infinite and
another where the interval is finite but the integrand has a discontinuity.

Case 1: Infinite Intervals

a) If

∫ t

a

f(x)dx exists for all t ≥ a, then

∫ ∞
a

f(x)dx = lim
t→∞

∫ t

a

f(x)dx.

b) If

∫ b

t

f(x)dx exists for all t ≤ b, then

∫ b

−∞
f(x)dx = lim

t→−∞

∫ b

t

f(x)dx.

Definition 1. If
∫∞
a
f(x)dx and

∫ b
−∞ f(x)dx are convergent if the limit exists, and

divergent if the limit does not exist.

c)If

∫ ∞
a

f(x)dxand

∫ a

−∞
f(x)dx are convergent ,∫ ∞

−∞
f(x)dx =

∫ a

−∞
f(x)dx+

∫ ∞
a

f(x)dx.

Determine whether the following integrals are convergent or divergent:

(1)
∫∞
1

dx/x.
Solution: Following the same procedure as the above example gives,

∫ ∞
1

dx

x
= lim
t→∞

∫ t

1

dx

x
= lim
t→∞

ln |x|
∣∣t
1

= lim
t→∞

ln |t| =∞

(2)
∫ 0

−∞ xexdx.
Solution: Notice that we must integrate this by parts with u = x⇒ du =
dx and dv = exdx⇒ v = ex.

∫ 0

−∞
xexdx = lim

t→−∞

∫ 0

t

xexdx = lim
t→−∞

xex|0t−
∫ 0

t

exdx = lim
t→−∞

xex|0t−ex|0t = lim
t→−∞

−tet−1+et.

For the first limit we need to employ L’Hôpital’s rule,

lim
t→−∞

tet = lim
t→−∞

t

e−t
= lim
t→−∞

1

−e−t
= lim
t→−∞

−et = 0.

Therefore,
∫ 0

−∞ xexdx = −1
1



(3)
∫∞
−∞

dx
1+x2 .

Solution: Here we need to split the integral in two. The easiest way to
split it is right down the middle,

∫ ∞
−∞

dx

1 + x2
=

∫ 0

−∞

dx

1 + x2
+

∫ ∞
0

dx

1 + x2

Lets call the first integral I1 and the second integral I2. We must inte-
grate these separately,

I1 = lim
t→−∞

∫ 0

t

dx

1 + x2
= lim
t→−∞

tan−1 x|0t = lim
t→−∞

− tan−1 t =
π

2

I2 = lim
t→∞

∫ t

0

dx

1 + x2
= lim
t→∞

tan−1 x|t0 = lim
t→∞

tan−1 t =
π

2

Then, I = I1 + I2 = π.

Lets look at this very special example,

Ex: For what values of p is the integral
∫∞
1

dx/xp?
Solution: Lets assume p 6= 1, since that case is slightly different, and we
have also dealt with that case in a previous example where it was divergent.
First lets integrate and then deal with the two cases when we take the limit.

∫ ∞
1

dx

xp
= lim
t→∞

∫ t

1

x−pdx = lim
t→∞

x−p+1

−p+ 1

∣∣∣∣t
1

= lim
t→∞

1

1− p

[
1

tp−1
− 1

]
.

If p > 1, p− 1 > 0, then as t→∞, tp−1 →∞, so 1/tp−1 → 0, therefore∫∞
1

dx
xp = 1

p−1 , and hence it converges.

If p < 1, p−1 < 0, so as t→∞, 1/tp−1 = t1−p →∞, therefore the integral
diverges. And we know for p = 1, the integral diverges as well.

We have just proved a theorem, which we state bellow

Theorem 1. Consider
∫∞
1

dx
xp . If p > 1, the integral converges to 1

p−1 , otherwise

it diverges.

Now, we move on to the second case, which is the case of finite intervals where
the integrand has a discontinuity.



Case 2: Integrands with Discontinuities.

a) If f is continuous in [a, b) and discontinuous at x = b, then

∫ b

a

f(x)dx = lim
t→b−

∫ t

a

f(x)dx.

b) If f is continuous in (a, b] and discontinuous at x = a, then

∫ b

a

f(x)dx = lim
t→a+

∫ b

t

f(x)dx.

Definition 2. The integral
∫ b
a
f(x)dx is said to be convergent if the limit exists,

and divergent if the limit does not exist.

c) If f has a discontinuity at c ∈ [a, b] and

∫ c

a

f(x)dx and

∫ b

c

f(x)dx both converge, then∫ b

a

f(x)dx =

∫ c

a

f(x)dx+

∫ b

c

f(x)dx.

Determine whether the following integrals are convergent or divergent:

(1)
∫ 5

2
dx√
x−2 .

Solution: Our discontinuity is at x = 2, so

∫ 5

2

dx√
x− 2

= lim
t→2+

∫ 5

t

dx√
x− 2

= lim
t→2+

2
√
x− 2

∣∣5
t

= lim
t→2+

2(
√

3−
√
t− 2) = 2

√
3.

(2)
∫ π/2
0

secxdx.
Solution: The discontinuity is at x = π/2, so

∫ π/2

0

secxdx = lim
t→(π/2)−

∫ t

0

secxdx = lim
t→(π/2)−

ln | secx+tanx|
∣∣t
0

= lim
t→(π/2)−

ln | sec t+tan t| =∞.

Therefore, it diverges. Notice that we didn’t have to use L’Hôpital’s rule
because both secx and tanx blow up in the same direction, whereas if they
blew up in opposite directions we would have to use L’Hôpital’s rule.

(3)
∫ 3

0
dx
x−1 .

Solution: Here we have a discontinuity at x = 1, so we must break the

integral up,
∫ 3

0
dx
x−1 =

∫ 1

0
dx
x−1 +

∫ 3

1
dx
x−1 . Lets integrate the first integral,

∫ 1

0

dx

x− 1
= lim
t→1−

∫ t

0

dx

x− 1
= lim
t→1−

ln |x− 1|
∣∣t
0

= lim
t→1−

(ln |t− 1|) = −∞.

Since one of the integrals diverge the entire integral diverges. Notice,
if we integrated without breaking the integral up we would have gotten a
false conclusion. Try it out for yourself.



(4)
∫ 1

0
lnxdx.

Solution: Here the discontinuity is at x = 1, and we also must integrate
by parts with u = lnx⇒ du = 1/x and dv = dx⇒ v = x,

∫ 1

0

lnxdx = lim
t→0+

∫ 1

t

lnxdx = lim
t→0+

x lnx
∣∣1
t
−
∫ 1

t

dx = lim
t→0+

−t ln t− 1 + t.

We deal with the first limit using L’Hôpital’s rule,

lim
t→0+

t ln t = lim
t→0+

ln t

1/t
= lim
t→0+

1/t

−1/t2
= lim
t→0+

−t = 0.

Therefore, the integral is convergent and
∫ 1

0
lnxdx = −1.

Comparison Tests.

Many times we may not be able to evaluate an integral or an integral may be
too difficult to evaluate in a reasonable time frame, but we would still like to know
the behavior of the integral, which translates to the behavior of certain differential
equations.

Theorem 2. Direct comparison test: If f, g are continuous with f ≥ g ≥ 0 for
x ≥ a,

a)

∫ ∞
a

f(x)dx converges ⇒
∫ ∞
a

g(x)dx converges.

b)

∫ ∞
a

g(x)dx diverges ⇒
∫ ∞
a

f(x)dx diverges.

For the following examples, state whether or not the integral converges or di-
verges, and explain why.

(1)
∫∞
0
e−x

2

dx.
Solution: We can’t evaluate this directly with the methods we have learned

thus far, so we must use a comparison test. Notice, for x ≥ 1, e−x ≥ e−x2

,
and we can prove that

∫∞
1
e−x converges. Now, if we weren’t sure about

the convergence we could go ahead and use the limit comparison test. To
prove that this converges we just take the integral,

∫ ∞
1

e−xdx = lim
t→∞

∫ t

1

e−xdx = lim
t→∞

(e−1 − e−t) = e−1.

Therefore, by the direct comparison test,
∫∞
0
e−x

2

dx converges.

(2)
∫∞
1

[(1 + e−x)/x]dx.
Solution: Notice, this integral would be a pain to evaluate, but we get a

feeling that it diverges. Now, 1+e−x

x ≥ 1
x because the exponential function

is always positive. Now, we know that
∫∞
1

dx/x diverges because p = 1.

Therefore, by the direct comparison test
∫∞
1

[(1 + e−x)/x]dx diverges.



Theorem 3. Limit comparison test: If f, g are continuous and limx→∞ f(x)/g(x) =
L, then either,

∫∞
a
f(x)dx and

∫∞
a
g(x)dx, both converge or both diverge.

For the following examples, state whether or not the integral converges or di-
verges, and explain why.

(1)
∫∞
1

√
x2+1
x3 dx.

Solution: Here the root gives us some difficulty in finding a direct com-
parison, but we can find something that would work for limit comparison.
Since the problem is in the numerator, lets divide through by the highest
power of the numerator,

√
x2 + 1

x3
=

√
1 + 1/x2

x2
∼ 1

x2
.

Now we must take the limit of the ratios to prove that this is a valid
comparison,

lim
x→∞

√
x2 + 1/x3

1/x2
= lim
x→∞

√
x2 + 1

x
= lim
x→∞

√
1 +

1

x2
= 1.

Since this is a valid comparison, and we know that
∫∞
1

dx/x2 converges

because p > 1, by the limit comparison test
∫∞
1

√
x2+1
x3 dx also converges.

(2)
∫∞
1

x√
x3+2

dx.

Solution: Here the problem is with the denominator, so lets divide through
by the highest power of the denominator,

x√
x3 + 2

=
x/
√
x3

√
x3 + 2/

√
x3

=
1/
√
x√

1 + 2/x3
∼ 1√

x
.

Now we take the limit of the ratios,

lim
x→∞

x/
√
x3 + 2

1/
√
x

= lim
x→∞

√
x3√

x3 + 2
= lim
x→∞

1√
1 + 2/x3

= 1.

Now,
∫∞
1

dx/
√
x diverges because p < 1, so by the limit comparison test,∫∞

1
x√
x3+2

dx.



10.1 Sequences

Sequences are just functions, except as opposed to standard functions whose
domains are the real numbers, the domain for sequences are the integers. So, we
can think of them as regular functions, but we must be careful in certain instances.

Lets quickly go through a few different ways of representing a sequence,

a)
{

n
n+1

}∞
n=1

; an = n
n+1 ;

{
1
2 ,

2
3 , · · · ,

n
n+1 , · · ·

}
b)

{
(−1)n(n+1)

3n

}∞
n=1

; an = (−1)n(n+1)
3n ;

{
− 2

3 ,
3
9 ,−

4
27 , · · · ,

(−1)n(n+1)
3n , · · ·

}
c)

{√
n− 3

}∞
n=3

; an =
√
n− 3, n ≥ 3;

{
0, 1,
√

2,
√

3, . . . ,
√
n− 3, . . .

}
d)

{
cos nπ6

}∞
n=0

; an = cos nπ6 , n ≥ 0
{

1,
√
3
2 ,

1
2 , 0, . . . , cos nπ6 , · · ·

}
An important skill to have is deriving a general formula for a sequence from

looking at a few terms of the sequence,

Ex: Find a formula for
{

3
5 ,−

4
25 ,

5
125 ,−

6
625 ,

7
3125 , · · ·

}
.

Solution: The first thing we notice is that there is an alternating sign,
and since the first element (n=1) is positive, we need to start of with an
even power of −1, so (−1)n−1 works. Notice we could have also used
(−1)n+1. We also notice that the denominators are respective powers of
5, so the denominator must be 5n. Now, we notice that the numerator
starts with 3 and goes up by one ever time, so the numerator is n+ 2, then
an = (−1)n−1 n+2

5n .

We can also take limits of sequences, which is what we are most interested in for
this class,

Ex: Lets take limits of the sequences we’ve seen today,

a) lim
n→∞

n

n+ 1
= 1 b) lim

n→∞
(−1)n

n+ 1

3n
= 0 c) lim

n→∞

√
n− 3 =∞

d) lim
n→∞

cos
nπ

6
DNE e) lim

n→∞
(−1)n−1

n+ 2

5n
= 0.

Just as with standard functions we can define convergence and divergence,

Definition 3. If limn→∞ an = L we say it is convergent, otherwise it is divergent.

Lets remind ourselves of the standard limit laws,

Theorem 4. If {an} and {bn} are convergent sequences, then

a) lim
n→∞

(an ± bn) = lim
n→∞

an ± lim
n→∞

bn b) lim
n→∞

can = c lim
n→∞

an c) lim
n→∞

anbn =
(

lim
n→∞

an)( lim
n→∞

bn

)
d) lim

n→∞

an
bn

=
limn→∞ an
limn→∞ bn

if lim
n→∞

bn 6= 0 e) lim
n→∞

apn =
[

lim
n→∞

an

]p
if p > 0 and an ≥ 0

We also have the squeeze theorem and a very important consequence of the
squeeze theorem,

Theorem 5. If an ≤ bn ≤ cn for n ≥ n0 and limn→∞ an = limn→∞ cn = L, then
limn→∞ bn = L.

Theorem 6. If limn→∞ |an| = 0, then limn→∞ an = 0.



(1) Let’s do a few more easy example before getting to the tough ones,

a) lim
n→∞

lnn

n
= lim
n→∞

1/n

1
= 0 b) lim

n→∞
(−1)n DNE c) lim

n→∞

(−1)n

n
= 0.

(2) Does an = n!
nn diverge or converge?

Solution: This is a tough one, and we may not be able to see what is
going on right away, so it’s a good idea to write down the first few terms
for the nth element of the sequence, an = 1·2·3·····n

n·n·n·····n . Now, we get a better
idea of what’s going on. Lets factor out 1/n, since we know what happens
to that sequence. If we do this, we notice 2·3·····n

n·n·····n ≤ 1 for n ≥ 1. Then our
sequence is always positive, and

lim
n→∞

an = lim
n→∞

1 · 2 · 3 · · · · · n
n · n · n · · · · · n

= lim
n→∞

1

n

(
2 · 3 · · · · · n
n · n · · · · · n

)
≤ lim
n→∞

1

n
= 0.

Therefore, our sequence too, converges to 0.
(3) For what values of r does the sequence an = rn converge?

Solution: Lets take some different cases. If |r| < 1, then limn→∞ rn = 0.
If |r| > 1, then limn→∞ rn = ∞. If r = 1, limn→∞ rn = 1. Finally, if
r = −1, limn→∞ rn does not exist. So, it converges for |r| < 1 and r = 1.

Monotonic Sequences.

What if we couldn’t take the limit of a sequence, but we knew some things
about the function and wanted to analyze the behavior. The following definitions
and theorem will help us deal with this.

Definition 4. A sequence an is called nondecreasing(think increasing) if an ≤ an+1

for all n ≥ 1, i.e. a1 ≤ a2 ≤ a3 ≤ · · · . It is called nonincreasing (think decreasing)
if an ≥ an+1 for all n ≥ 1, i.e. a1 ≥ a2 ≥ a3 ≥ · · · . These types of sequences are
collectively called monotonic sequences.

(1) Is 3/(n+ 5) increasing or decreasing?
Solution: For this case it’s easiest to compare the nth term and the (n+1)th

term. To do this we simply plug in and we notice,

3

n+ 5
>

3

(n+ 1) + 5
=

3

n+ 6
.

Since this is true for all n ≥ 1, the sequence is decreasing.

(2) Show
{

n
n2+1

}∞
n=1

is decreasing.

Solution: For this it’s easier to take the derivative,(
n

n2 + 1

)′
=

1− n2

(n2 + 1)2
< 0; forn > 1.

Therefore, the sequence is decreasing.

Definition 5. A sequence an is said to be bounded above if there is an M such
that an ≤ M for all n ≥ 1, and bounded below if there is an m such that an ≥ m
for all n ≥ 1.

Theorem 7. Every bounded monotonic sequence is convergent.



Difference Equations (aka Recurrence Relations, aka Recursive Formula).

These types of sequences come up often in various applications. The idea is
that subsequent elements in the sequence will depend on previous elements in the
sequence. We can think of the (n + 1)th term as a function of a combination of
other terms, i.e. an+1 = f(an, an−1, . . . , a1).

(1) Lets try to find the limit of the following difference equation: an+1 =
(an+6)/2. Notice that if the limit exists, limn→∞ an+1 = limn→∞ an = a∗.
Here, a∗ is called the fixed point of the difference equation. Now, we can
plug this in and find the value for it,

a∗ =
1

2
(a∗ + 6)⇒ a∗ = 6.

Examples From the Book.

46) Notice limn→∞
∣∣ sin2 n

2n

∣∣ ≤ limn→∞
1
2n = 0⇒ limn→∞

sin2 n
2n = 0.

47) limn→∞
n
2n = limn→∞

n
en ln 2 = limn→∞

1
ln 2en ln 2 = 0.

68) limn→∞ ln
(
1 + 1

n

)n
= limn→∞ n ln

(
1 + 1

n

)
= limn→∞

ln(1+1/n)
1/n = limn→∞

−1/(n2+n)
−1/n2

= limn→∞
n2

n2+n = limn→∞
1

1+1/n = 1.

71) For this problem we must take eln, then take the limit

lim
n→∞

(
xn

2n+ 1

)1/n

= lim
n→∞

eln(x
n/(2n+1))n = elimn→∞ ln(xn/(2n+1))/n.

Lets first compute the limit then plug it back in,

lim
n→∞

ln(xn/(2n+ 1))

n
= lim
n→∞

ln(xn)− ln(2n+ 1)

n
= lim
n→∞

n lnx− ln(2n+ 1)

n

= lim
n→∞

lnx− 2/(2n+ 1)

1
= lim
n→∞

lnx− 2

2n+ 1
= lnx.

Plugging this back in gives, eln x = x.
72) For this we must use our eln trick again,

lim
n→∞

(
1− 1

n2

)n
= lim
n→∞

eln(1−1/n
2)n = elimn→∞ n ln(1−1/n2).

So, lets look at the limit then plug it back in,

lim
n→∞

ln(1− 1/n2)

1/n
= lim
n→∞

−2/(n− n3)

−1/n2
= lim
n→∞

2n2

n− n3
= lim
n→∞

2

1/n− n
= 0.

Then, plugging back in gives, e0 = 1.



84) Once again,

lim
n→∞

eln(n
2+n)1/n = elimn→∞

1
n ln(n2+n).

Computing the limit gives,

lim
n→∞

ln(n2 + n)

n
= lim
n→∞

(2n+ 1)/(n2 + n)

1
= lim
n→∞

2n+ 1

n2 + n
= lim
n→∞

2 + 1/n

n+ 1
= 0.

Plugging back in gives, e0 = 1.
90) We have done a problem like this in the improper integrals section. This re-

iterates the intimate relationship between integrals and sequences. limn→∞
∫ n
1

dx/xp,
for p > 1 converges to 1/(p− 1). We can see this by integrating it.


