
Math 112 - 018 Rahman Week8

10.2 Series

A series is a sum of sequential terms. An infinite series can be represented as
such:

∑∞
n=1 an. We also think of series as a sequence of partial sums, where each

partial sum is sN =
∑N

n=1 an. We have to make sure we don’t confuse these very
different sequences. One is a sequence that is being summed, the other is a sequence
of sums.

Definition 1. Given
∑∞

n=1 an, let sn =
∑n

i=1 ai bet the partial sums. If sn con-
verges and limn→∞ sn = s exists, then we say

∑∞
n=1 an converges and

∑∞
n=1 an = s.

Otherwise, we say it diverges.

Ex: Consider the series
∑∞

n=1 ar
n−1. This is a very important series called the

geometric series. What does this converge to?
Notice if r = 1, sn = a+ a+ · · ·+ a = na→ ±∞, so it diverges. Now, if

r = −1, the partial sum will jump between zero and one, so it also diverges.
If |r| 6= 1, sn = a+ar+ar2 + · · ·+arn−1, and rsn = ar+ar2 + · · ·+arn,

then sn − rsn = a− arn ⇒ sn = a(1−rn)
1−r . Now, for −1 < r < 1, rn → 0 as

n→∞, hence limn→∞ sn = a/(1− r). For |r| > 1, rn →∞, so sn clearly
diverges

Theorem 1. The geometric series
∑∞

n=1 ar
n−1 converges, for |r| < 1 to

∞∑
n=1

arn−1 =
a

1− r
, (1)

and diverges otherwise.

(1) Find the sum of S = 5− 10/3 + 20/9− 40/27 + · · · .
Solution: Notice that we can immediately factor out a 5, S = 5[1− 2/3 +
4/9 − 8/27 + · · · ]. Now we notice that we have alternating sings, so we
must have a (−1)n−1 because the first term is positive (if the first term was
negative it would be (−1)n). Next, we notice that all the terms are powers
of 2/3, via the geometric series theorem, our sum is

∞∑
n=1

5

(
−2

3

)n−1

=
5

1 + 2/3
=

5

5/3
= 3.

(2) Is
∑∞

n=1 22n31−n convergent or divergent?
Solution: This series isn’t in the form of the geometric series, so we must
convert it to that form,

∞∑
n=1

22n31−n =

∞∑
n=1

4n

3n−1
=

∞∑
n=1

4

(
4

3

)n−1

.

This does not converge because 4/3 > 1, so it violates the hypothesis of the
geometric series theorem.
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(3) Write 2.317 as a geometric series.
Solution: We must think of this as a constant plus a fraction,

2.317 = 2.3+
17

103
+

17

105
+ · · · = 2.3+17

[
1

103
+

1

105
· · ·
]

= 2.3+17

∞∑
n=1

(
1

10

)2n+1

.

(4) For what values of x does
∑∞

n=0 x
n (this is called a power series) converge?

Solution: This is exactly a geometric series if x were fixed. Now, we may
not be able to see this right away, but if we play around with the index we
see that

∞∑
n=0

xn =

∞∑
n=1

xn−1 =
1

1− x
; |x| < 1. (2)

The next couple of examples are telescoping and harmonic series. These will
illustrate some concepts that can easily be confused.

(1) Telescoping series:
∑∞

n=1
1

n(n+1) .

Notice, this looks a lot like a partial fraction, so 1
n(n+1) = 1

n −
1

n+1 . So
we get,

∞∑
n=1

1

n(n+ 1)
=

∞∑
n=1

1

n
− 1

n+ 1
=

(
1− 1

2

)
+

(
1

2
− 1

3

)
+· · ·+

(
1

n
− 1

n+ 1

)
= 1− 1

n+ 1
→ 1 as n→∞.

(2) Harmonic series:
∑∞

n=1 1/n.
Notice, that the sequence 1/n converges to 0 as n → ∞, however we

will show that the series diverges. In order to do this we calculate the
partial sums and put estimates on them, s1 = 1, s2 = 1 + 1/2, s4 =
1+1/2+(1/3+1/4) > 1+1/2+(1/4+1/4) = 2, s8 > 1+3/2, s16 > 1+4/2,
s32 > 1 + 5/2, s64 > 1 + 6/2. So, s2n > 1 + n/2 ⇒ ∞ as n → ∞. So, by
definition, the series diverges.

The following theorems give us a frame work to prove divergence but NOT
convergence.

Theorem 2. If the series
∑∞

n=1 an converges, then limn→∞ an = 0.

Proof. We can calculate the partial sums,

sn = a1 + a2 + · · ·+ an−1 + an

sn−1 = a1 + a2 + · · ·+ an−2 + an−1

Now, if we subtract the two, we get sn − sn−1 = an, so we have a representation
of an from the partial fractions. Now, since the series converges, the partial sums
converge to exactly that sum, so limn→∞ sn = s and limn→∞ sn−1 = s. Therefore,
limn→∞ an = limn→∞ sn − sn−1 = s− s = 0. �

Corollary 1. If limn→∞ an 6= 0 or doesn’t exist, then
∑∞

n=1 an diverges.

Ex: Show
∑∞

n=1
n2

5n2+4 diverges.
Solution: We can just show that the sequence an doesn’t go to zero.

lim
n→∞

n2

5n2 + 4
= lim

n→∞

1

5 + 4/n2
=

1

5
.

Here are some properties of sums that we should keep in mind,



Theorem 3. If
∑
an and

∑
bn converge,

∑
can and

∑
an ± bn converge, and

a)
∑

can = c
∑

an and b)
∑

(an ± bn) =
∑

an ±
∑

bn. (3)

Ex: Does
∑∞

n=1

(
3

n(n+1) + 1
2n

)
converge? If so, find the sum.

Solution: First we find the two sums individually,

∞∑
n=1

3

n(n+ 1)
= 3

∞∑
n=1

1

n
− 1

n+ 1
= 3.

∞∑
n=1

1

2n
=

∞∑
n=1

1

2

(
1

2

)n−1

=
1/2

1− 1/2
= 1.

So, the series converges to
∑∞

n=1

(
3

n(n+1) + 1
2n

)
= 4.

10.3 Integral test

I can’t quite give the full motivation as I did in class, but basically if we look
at an integral we can approximate it by a sum. Since integrals and sums are so
intimately connected, we can make a conclusion about the sum from evaluating the
integral.

Ex: Lets look at
∑∞

n=1 1/n2. If we look at the partial sums we have limn→∞ sn <

1 +
∫∞
1

dx/x2 because the partial sums will just be right Riemann sums
after the first one. So, if the integral converges the series will also converge.
But we already know the integral converges since p > 1. So, the series too
converges.

We have a similar result for series that diverge, but let’s not go over that
and get straight to the test. To see for yourself test it out with

∑∞
n=1 1/n.

Theorem 4. Integral test: Suppose f is continuous, positive, and decreasing on
[1,∞) and let an = f(n), then the series

∑∞
n=1 an converges if and only if the

integral
∫∞
1
f(x)dx also converges, i.e.∫ ∞

1

f(x)dx converges ⇒
∞∑

n=1

an converges. (4)

∫ ∞
1

f(x)dx diverges ⇒
∞∑

n=1

an diverges. (5)

(1) Test
∑∞

n=1 1/(n2 + 1)
Solution: We integrate:

∫ ∞
1

dx

x2 + 1
= lim

t→∞

∫ t

1

dx

x2 + 1
= lim

t→∞
tan−1 x|t1 = lim

t→∞
(tan−1 t− π/4) =

π

4
.

(2) For what values of p does
∑∞

n=1 1/np converge?

Solution: We have to integrate
∫∞
1

dx/xp, but we already know this con-
verges for p > 1, and by the integral test, the series too converges for p > 1
and diverges otherwise. This is called a p-series.

Theorem 5. P-series: The series
∑∞

n=1 1/np converges for p > 1, and diverges
otherwise.



(1)
∑∞

n=1 1/n3 converges because p = 3 > 1.

(2)
∑∞

n=1 1/n1/3 diverges because p = 1/3 < 1.
(3) Test

∑∞
n=1(lnn)/n.

Solution: We have to integrate this,∫ ∞
1

lnx

x
dx = lim

t→∞

∫ t

1

lnx

x
dx = lim

t→∞

1

2
(lnx)2

∣∣∣∣t
1

= lim
t→∞

1

2
(ln t)2 =∞

There will be times when we wont be able to find the sum of certain convergent
series. In these cases it is beneficial to estimate the sum. Notice the bigger partial
sum we take, the better the estimate, but how can we tell how good the estimate
is? Since it converges, we can use two integrals to do this. Notice that s ≤
sn +

∫∞
n
f(x)dx and s ≥ sn +

∫∞
n+1

f(x)dx because these are like left and right hand
Riemann estimates for integrals of monotonic functions.

Definition 2. Suppose
∑∞

n=1 an = s, and sn are it’s partial sums. Then the
remainder of the nth partial sum is Rn = s− sn.

Theorem 6. Remainder: Consider
∑∞

an = s. Suppose f(x) = ak, where f is
continuous, positive, and decreasing for x ≥ n, then∫ ∞

n+1

f(x)dx ≤ Rn ≤
∫ ∞
n

f(x)dx. (6)

Ex: Consider
∑∞

n=1 1/n3.
(a) Find the maximum error for n = 10.

Solution: We just plug this into the formula,

R10 ≤
∫ ∞
10

dx

x3
= lim

t→∞

∫ t

10

dx

x3
= lim

t→∞

−1

2x2

∣∣∣∣t
10

= lim
t→∞

−1

2t2
− −1

2 ∗ (10)2
=

1

200
= .005.

(b) How many terms must we take for Rn ≤ .0005?
Solution: Here we bound our formula and see what n has to be,

Rn ≤
∫ ∞
n

dx

x3
=

1

2n2
< .0005⇒ n2 >

1

.001
= 1000⇒ n >

√
1000 ≈ 31.6.

So, we must take 32 terms.
(c) Now, notice if we add sn to both sides of the inequality we get bounds

on the exact solution, i.e. s10 ≈ 1.1975, so for n = 10.

s10 +

∫ ∞
11

f(x)dx ≤ R10 + s10 ≤ s10 +

∫ ∞
10

f(x)dx

⇒ 1.1975 +
1

242
≤ s ≤ 1.1975 +

1

200

⇒ 1.2016 ≤
∞∑

n=1

1/n3 ≤ 1.2025.


