
Math 112 - 018 Rahman Week9

10.4 Comparison tests

This is very similar to integral comparison tests.

Theorem 1. Direct Comparison: Suppose
∑

an and
∑

bn have positive terms,
then

(i) If
∑

bn converges and an ≤ bn for all n, then
∑

an also converges.
(ii) If

∑
bn diverges and an ≥ bn for all n, then

∑
an also diverges.

State whether the following converge or diverge, and state the reasoning.

(1)
∑∞

n=1 1/(2n + 1).
Solution: We know 1

2n+1 < 1
2n . Therefore, since

∑∞
n=1 1/2n converges

because of p-series, where p > 1,
∑∞

n=1 1/(2n + 1) also converges by the
direct comparison test.

(2)
∑∞

n=1
5

2n2+4n+3 .
Solution: Here as usual we take the highest power of the top and bottom.
This will give us 5/2n2. We know the sum of this converges, so for direct
comparison we would attempt to show that this is greater than our original
sequence. This is easy to show since all the terms in the denominator
are additive, so 5

2n2+4n+3 ≤
5

2n2 . Since
∑∞

n=1 1/n2 converges by p-series
because p > 1, the original series also converges by the direct comparison
test.

(3)
∑∞

n=1(lnn)/n.

Solution: Since lnn > 1 for n ≥ 3, lnn
n ≥ 1

n for n ≥ 3. Further, since∑∞
n=1 1/n diverges by p-series because p = 1, by the direct comparison

test, the original series converges as well. Notice that we only care about
the tail end.

Notice that we can’t use this test on something like
∑∞

n=1 1/(2n−1), so we need
the limit comparison test,

Theorem 2. Limit comparison: Suppose
∑

an and
∑

bn have positive terms, and
limn→∞ an/bn = c > 0, where c is a finite number. Then, either both

∑
an and∑

bn converge or both diverge. Further, if c = 0 and
∑

bn converges, then
∑

an
converges, and if c =∞ and

∑
bn diverges, then

∑
an diverges.

State whether the following converge or diverge, and state the reasoning.

(1)
∑∞

n=1 1/(2n − 1).
Solution: Again we take the highest power of both the top and the bottom,
i.e. 1/2n. Taking the limit gives,

lim
n→∞

1/(2n − 1)

1/2n
= lim

n→∞

2n

2n − 1
= lim

n→∞

1

1− 1/2n
= 1 > 0.

Since
∑∞

n=1
1
2n converges by geometric series because |1/2| < 1, by the limit

comparison test
∑∞

n=1 1/(2n − 1) also converges.
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(2)
∑∞

n=1
2n2+3n√

5+n5
.

Solution: As before we take the largest power of the numerator and largest
part of the denominator, i.e. 2n2/n5/2 = 2/

√
n. Taking the limit gives,

lim
n→∞

(2n2 + 3n)/
√

5 + n5

2/
√
n

= lim
n→∞

2n5/2 + 3n3/2

2
√

5 + n5
= lim

n→∞

2 + 3/n

2
√

5/n5 + 1
= 1.

Since
∑∞

n=1 1/
√
n diverges by p-series because p < 1, by the limit compar-

ison test,
∑∞

n=1
2n2+3n√

5+n5
also diverges.

10.5 Ratio and Root Tests

Sometimes we need to bring out the big guns,

Theorem 3. Ratio test: Consider
∑

an, and suppose limn→∞ |an+1/an| = L, then

a) If L < 1, then
∑

an converges absolutely,
b) If L > 1, then

∑
an diverges,

c) and if L = 1, the test is inconclusive.

State whether the following converge or diverge, and state the reasoning.

(1)
∑∞

n=1 n
3/3n.

Solution: We apply the ratio test,

∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣ (n + 1)3

3n+1
· 3n

n3

∣∣∣∣ =
1

3

(
n + 1

n

)3

=
1

3

(
1 +

1

n

)3

.

Taking the limit of this gives, limn→∞
1
3

(
1 + 1

n

)3
= 1

3 < 1. Therefore,

by the ratio test,
∑∞

n=1 n
3/3n converges absolutely.

(2)
∑∞

n=1 n
n/n!.

Solution: We apply the ratio test,

∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣ (n + 1)n+1

(n + 1)!
· n!

nn

∣∣∣∣ =
(n + 1)n

nn
=

(
n + 1

n

)n

=

(
1 +

1

n

)n

.

Taking the limit gives,

lim
n→∞

(
1 +

1

n

)n

= exp

[
lim
n→∞

n ln(1 +
1

n
)

]
,

Now, we look at just the inside,

lim
n→∞

n ln(1 +
1

n
) = lim

n→∞

ln(1 + 1
n )

1/n
= lim

n→∞

1

1 + 1/n
= 1.

then,

lim
n→∞

(
1 +

1

n

)n

= e > 1.

Therefore, by the ratio test,
∑∞

n=1 n
n/n! diverges.



Theorem 4. Root test: Consider
∑

an, and suppose limn→∞
n
√
|an| = L, then

a) If L < 1, then
∑

an converges absolutely,
b) If L > 1, then

∑
an diverges,

c) and if L = 1, the test is inconclusive.

State whether the following converge or diverge, and state the reasoning.

(1)
∑∞

n=1

(
2n+3
3n+2

)n
.

Solution: We apply the root test,

n
√
|an| = n

√∣∣∣∣ (2n + 3

3n + 2

)n ∣∣∣∣ =
2n + 3

3n + 2
=

2 + 3/n

3 + 2/n
.

Taking the limit gives, limn→∞
2+3/n
3+2/n = 2

3 < 1. Therefore, by the root

test,
∑∞

n=1

(
2n+3
3n+2

)n
converges absolutely.

10.6 Alternating Series and Absolute Convergence

A series that has alternating signs, i.e.
∑

(−1)nbn, which means we get cancel-
lations. We, of course, have a test for these situations.

Theorem 5. Alternating series test: Consider the series
∑

(−1)nbn, where bn > 0,
and

(i) bn+1 ≤ bn (i.e. bn are decreasing) for all n > N , where N ∈ N
(ii) limn→∞ bn = 0 (i.e. the series bn converges to 0),

then
∑

(−1)nbn converges.

State whether the following converge or diverge, and state the reasoning.

(1) Alternating harmonic series:
∑∞

n=1(−1)n−1/n.
Solution: First we take the limit, limn→∞ 1/n = 0. Now, we show the
(n + 1)th term is smaller than the nth term, 1/(n + 1) ≤ 1/n for all n.
Therefore, by the alternating series test,

∑∞
n=1(−1)n−1/n converges.

(2)
∑∞

n=1
(−1)n3n
4n−1 .

Solution: Lets take the limit of the sequence, limn→∞
3n

4n−1 = limn→∞
3

4−1/n =
3
4 . Since this does not converge to 0, the series will diverge.

(3)
∑∞

n=1(−1)n+1 n2

n3+1 .

Solution: Taking the limit gives, limn→∞
n2

n3+1 = 0.

Error estimation:
This may or may not show up on the exam. If it does show up it will be a minor
question, so know how to do this, but don’t put too much effort into it.

If
∑

(−1)nbn satisfies the alternating series test, then the remainder |Rn| ≤ bn+1.

Ex: Approximate the sum of
∑∞

n=0
(−1)n

n to three decimal places.
Brief Solution: We see that b7 = 1/5040 < 1/5000 < .0002, so s6 (the
sixth partial sum) is correct up to three decimal places, which is s ≈ s6 =
.368.



Definition 1. The series
∑

an is absolutely convergent if
∑
|an| converges. Other-

wise, if
∑

an, but
∑
|an| diverges, then

∑
an is said to be conditionally convergent.

State whether the following are absolutely convergent, conditionally convergent,
or divergent.

(1)
∑∞

n=1(−1)n−1/n2.
Taking the absolute value gives,

∑∞
n=1 |(−1)n−1/n2| =

∑∞
n=1 1/n2. We

know this converges by p-series because p > 1. Therefore,
∑∞

n=1(−1)n−1/n2

is absolutely convergent.
(2)

∑∞
n=1(−1)n−1/n.

Taking the absolute value gives,
∑∞

n=1 |(−1)n−1/n| =
∑∞

n=1 1/n. We know
this diverges by p-series because p = 1. However,

∑∞
n=1(−1)n−1/n con-

verges by the alternating series test, which we showed further up. There-
fore,

∑∞
n=1(−1)n−1/n converges conditionally.

Theorem 6. If
∑

an converges absolutely, then it converges.

Ex: Does
∑∞

n=1
cosn
n2 converge?

Solution: Lets look at the sum of the absolute values,
∑∞

n=1

∣∣∣∣ cosnn2

∣∣∣∣. Now,∣∣∣∣ cosnn2

∣∣∣∣ ≤ 1
n2 . We know that

∑∞
n=1 1/n2 converges by p-series because p > 1.

Hence,
∑∞

n=1

∣∣∣∣ cosnn2

∣∣∣∣ also converges. Therefore since
∑∞

n=1
cosn
n2 converges

absolutely, it converges.


