
Math 112 - 009 F15 Rahman Week3

7.3 Hyperbolic Functions

Hyperbolic functions are similar to trigonometric functions, and have the
following definitions:

• sinhx = 1
2(ex − e−x)

• coshx = 1
2(ex + e−x)

• tanhx = sinhx
coshx

• cschx = 1/ sinhx
• sechx = 1/ coshx
• cothx = 1/ tanhx

It’s also useful to know what they look like

To remember what they look like, just use the definitions and recall what
the exponential functions look like and take the average. If you’re confused
as to what I’m talking about make sure to ask me to explain it.

They are subject to the following identities:

• sinh(−x) = − sinhx
• cosh(−x) = coshx
• cosh2 x− sinh2 x = 1
• 1− tanh2 x = sech2x
• sinh(x+ y) = sinhx cosh y + coshx sinh y
• cosh(x+ y) = coshx cosh y + sinhx sinh y

We can prove some of these things, so we may get a better understanding
of the identities. Proofs are important, even for engineers!
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Theorem 1. cosh2 x− sinh2 x = 1.

Proof. We go straight to the definition,

cosh2 x− sinh2 x =

[
1

2
(ex + e−x)

]2
−
[

1

2
(ex − e−x)

]2
=

1

4
(e2x + 2 + e−2x)− 1

4
(e2x − 2 + e−2x) = 1

�

Theorem 2. 1− tanh2 x = sech2x

Proof. Here we simply divide the entire equation by cosh2 x,

[
cosh2 x− sinh2 x = 1

] 1

cosh2 x
⇒ 1− tanh2 x = sech2x.

The other identities are proved similar to this one. If you have time, you
should try to prove the other identities by yourselves. Even though they
wont appear on exams they will help you get a better understanding of the
concepts.

�

Here is a nice proof of one of the most important trigonometric identities,
and all other identities can be very easily derived through these identities
in a similar fashion to the above theorem.

Theorem 3. sin2 θ + cos2 θ = 1.

Proof. Consider a right triangle and one non-right angle θ. Let the side
opposite to θ be of length x, the side adjacent to θ be of length y, and the
hypotenuse z. Then, sin θ = x/z and cos θ = y/z, and by the Pythagorean
theorem x2 + y2 = z2, then

sin2 θ + cos2 θ =
x2

z2
+
y2

z2
=
x2 + y2

z2
=
z2

z2
= 1.

�

It is important to know the derivatives of hyperbolic functions as well,

• (sinhx)′ = coshx
• (coshx)′ = sinhx
• (tanhx)′ = sech2x
• (cschx)′ = −cschx cothx
• (sechx)′ = −sechx tanhx
• (cothx)′ = −csch2x

These can all be derived very easily from the definitions.

Ex: (cosh
√
x)′ = 1

2
√
x
(sinh(

√
x)).



8.1 Integration Review

Here we do some standard book problems from the section.

4 I =
∫ π/3
π/4 dx/(cos2 x tanx).

Solution: I =
∫ π/3
π/4 dx/ cosx =

∫ π/3
π/4 secxdx = ln | secx+tanx|

∣∣∣∣π/3
π/4

=

ln |2 +
√

3| − ln |1 +
√

2|.
18 I =

∫
e
√
ydy/2

√
y Solution: Let u =

√
y, then I =

∫
2udu =

2u/ ln 2 = 2
√
y/ ln 2.

40 I =
∫ √

xdx/(1 + x3). Solution: Let u = x3/2 ⇒ du = 3
√
xdx/2,

then I = 2
3

∫
du/(1 + u2) = 2

3 tan−1 u = 2
3 tan−1(x3/2) + C.

8.2 Integration by parts

The modern notion of integration by parts comes from a beautiful theory
of integrals by Riemann and Stieltjes in 1894, soon after which Stieltjes
passed away. The idea is we can integrate over certain functions instead of
just over x. We can think of it as a generalization of “u-sub”.

To derive it, consider the product rule,

d

dx
[f(x)g(x)] = f(x)g′(x) + g(x)f ′(x)⇒ d[f(x)g(x)] = f(x)g′(x)dx+ g(x)f ′(x)dx

⇒
∫

d[f(x)g(x)] = f(x)g(x) =

∫
f(x)g′(x)dx+

∫
g(x)f ′(x)dx

⇒
∫
f(x)g′(x)dx = f(x)g(x)−

∫
g(x)f ′(x)dx.

This can be written in the form, which we will use from now on

(1)

∫
udv = uv −

∫
vdu.

(1) I =
∫
x sinxdx.

Solution: Let u = x ⇒ du = dx and dv = sinx ⇒ v = − cosx.
Then,

I = −x cosx+

∫
cosxdx = −x cosx+ sinx+ C.



We see here that we generally choose the easiest thing to integrate
as dv. We can use ILATE: InverseLogsAlgebraicTrigonometricEx-
ponential, to help determine which is easier to integrate. Things
get easier to integrate as we go to the right, for example, Exponen-
tials are easier to integrate than Trigonometric functions. But this
doesn’t always work! So, only use it as a guide, not a rule of thumb.

(2) I =
∫

lnxdx.

Solution: Let u = lnx⇒ du = 1
xdx and dv = dx⇒ v = x. Then,

I = x lnx−
∫
x

dx

x
= x lnx− x+ C.

(3) I =
∫
t2etdt.

Solution: Let u = t2 ⇒ du = 2tdt and dv = etdt⇒ v = et. Then,

I = t2et − 2

∫
tetdt.

Notice, we need to integrate by parts again for the second integral
I2 =

∫
tetdt. Let u = t⇒ du = dt and dv = etdt⇒ v = et. Then

I2 = tet −
∫
etdt = tet − et.

Plugging this back into I gives,

I = t2et − 2tet + 2et + C.

It may be appealing to do this sort of problem using “tabular
integration”, however you should avoid using this “method”. If you
make a mistake using this “method”, you will lose a majority of the
points. You are better off doing integration by parts twice.

(4) I = ex sinxdx.
Solution: Let u = exdx⇒ du = etdt and dv = sinx⇒ v = − cosx.
Then,

I = −ex cosx+

∫
ex cosxdx.

We must do another integration by parts on the second integral. Let
u = ex ⇒ du = exdx and dv = cosx⇒ v = sinx. Then,

I2 = ex sinx−
∫
ex sinxdx.

Plugging this into I gives,

I = ex sinx− ex cosx−
∫
ex sinxdx.

Now, we add both sides by
∫
ex sinxdx, to get

2

∫
ex sinxdx = ex sinx−ex cosx⇒

∫
ex sinxdx =

1

2
(ex sinx−ex cosx)+C.



Notice, for this problem it didn’t matter if you chose ex or sinx and
cosx as your u or dv. Try this problem the other way around to
convince yourself that it works both ways. And as usual, if you’re
confused about what I’m talking about, please make sure to ask
me. It’s better to get questions answered early on before you’re
bombarded with new material.

(5) I =
∫ 1
0 tan−1 xdx.

Solution: Let u = tan−1 x⇒ dx
1+x2

and dv = dx⇒ v = x. Then,

I = x tan−1 x
∣∣1
0
−
∫ 1

0

xdx

1 + x2
.

The second integral is our usual u-sub integral where u = 1 + x2 ⇒
du = 2xdx. Then,

I2 =
1

2

∫ 2

1

du

u
=

1

2
lnu

∣∣∣∣2
1

= ln 2.

Plugging this back into I gives,

I = x tan−1 x

∣∣∣∣1
0

− 1

2
lnu

∣∣∣∣2
1

=
π

4
− 1

2
ln 2

(6) This next example is a test of our abilities to think abstractly. You
wont see this sort of thing on the exam, but you’ll see things on the
exam that use many of the tricks we will use on this example.
Find a reduction formula for I =

∫
sinn xdx.

Solution: Let u = sinn−1 x⇒ du = (n− 1) sinn−2 x cosxdx and
dv = sinxdx⇒ v = − cosx. Then,∫

sinn xdx = − cosx sinn−1 x+ (n− 1)

∫
sinn−2 x cos2 xdx

= − cosx sinn−1 x+ (n− 1)

∫
sinn−2 x(1− sin2 x)dx

= − cosx sinn−1 x+ (n− 1)

∫
sinn−2 x− (n− 1)

∫
sinn xdx

⇒ n sinn xdx = − cosx sinn−1 x+ (n− 1)

∫
sinn−2 xdx

⇒ sinn xdx = − 1

n
cosx sinn−1 x+

n− 1

n

∫
sinn−2 xdx.



8.3 Trigonometric Integration

Lets look at a few examples first and then we’ll develop a general strategy.

Sines and Cosines.

(1) Consider
∫

cos3 xdx.
Solution: We recall the identity: cos2 = 1 − sin2 x. Lets see if we
can use this to simplify the problem.∫

cos3 xdx =

∫
cosx[1− sin2 x]dx =

∫
cosxdx−

∫
sin2 x cosxdx.

Now, the first integral is easy and the second integral we solve via
u-sub where u = sinx⇒ du = cosxdx.∫

cos3 xdx = sinx−
∫
u2du = sinx− 1

3
u3 + C = sinx− 1

3
sin3 x+ C

(2)
∫

sin5 x cos2 xdx.
Solution: Lets use the same strategy as above, except this time on
sinx.∫

sin5 x cos2 xdx =

∫
(sin2 x)2 sinx cos2 xdx =

∫
(1−cos2 x)2 cos2 x sinxdx.

We can go straight to u-sub with u = cosx⇒ du = − sinx,∫
sin5 x cos2 xdx = −

∫
(1−u2)2u2du = −1

3
u3+

2

5
u5−1

7
u7+C = −1

3
cos3 x+

2

5
cos5 x−1

7
cos7 x+C

(3)
∫ π
0 sin2 xdx
Solution: For this problem if we used the identity we used for the
past two problems we would be going in circles, so we use another
identity - the double angle formula: cos 2x = 1− 2 sin2 x,

∫ π

0
sin2 xdx =

1

2

∫ π

0
(1− cos 2x)dx =

[
1

2

(
x− 1

2
sin 2x

)]π
0

=
π

2

(4)
∫

sin4 xdx
Solution: This is similar to the above problem,

∫
sin4 xdx =

∫ [
1

2
(1− cos 2x)

]2
dx =

1

4

∫
(1− 2 cos 2x+ cos2 2x)dx

=
1

4

∫ [
1− 2 cos 2x+

1

2
(1 + cos 4x)

]
dx =

1

4

(
3

2
x− sin 2x+

1

8
sin 4x

)
+ C



Strategies for
∫

sinm x cosn xdx.

(1) If the power of the cosine term is odd (i.e. n = 2k + 1), save one
cosine factor and use cos2 x = 1− sin2 x,∫

sinm x cos2k+1 dx =

∫
sinm x(cos2 x)k cosxdx

=

∫
sinm x(1− sin2 x)k cosxdx.(2)

Then substitute u = sinx⇒ du = cosx.
(2) If the power of the sine term is odd (i.e. m = 2k + 1), save one sine

factor and use sin2 x = 1− cos2 x,

(3)∫
sin2k+1 cosn xdx =

∫
(sin2 x)k cosn xdx =

∫
(1− cos2 x)k cosn x sinxdx.

Then substitute u = cosx⇒ du = − sinx.
(3) If the powers of both sine and cosine are even, use the double-angle

formulas:

sin2 x =
1

2
(1− cos 2x) cos2 x =

1

2
(1 + cos 2x) sinx cosx =

1

2
sin 2x.

Tangents and Secants.

(1)
∫

tan6 x sec4 xdx.
Solution: We recall the identity sec2 x = 1 + tan2 x, and see where
this takes us

∫
tan6 x sec4 xdx =

∫
tan6 x(1 + tan2 x) sec2 xdx.

Then we substitute u = tanx⇒ du = sec2 xdx, then

∫
tan6 x sec4 xdx =

∫
u6(1+u2)du =

1

7
u7+

1

9
u9+C =

1

7
tan7 x+

1

9
tan9 x+C



(2)
∫

tan5 θ sec7 θdθ.
Solution: Here lets try using the other identity: tan2 x = sec2 x−1,

∫
tan5 θ sec7 θdθ =

∫
tan4 θ sec6 θ sec θ tan θdθ =

∫
(sec2 θ−1)2 sec6 θ sec θ tan θdθ.

We employ the u-sub u = sec θ ⇒ du = sec θ tan θdθ,

∫
tan5 θ sec7 θdθ =

∫
(u2−1)2u6du =

1

11
u11−2

9
u9+

1

7
u7+C =

1

11
sec11 x−2

9
sec9 x+

1

7
sec7 x+C

Strategies for
∫

tanm x secn xdx.

(1) If the power of the secant term is even (i.e. n = 2k, k ≥ 2), save a
factor of sec2 x and use sec2 x = 1 + tan2 x,∫

tanm x sec2k xdx =

∫
tanm x(sec2 x)k−1 sec2 xdx

=

∫
tanm x(1 + tan2 x)k−1 sec2 xdx.(4)

Then substitute u = tanx⇒ du = sec2 xdx.
(2) If the power of the tangent term is odd (i.e. m = 2k + 1), save a

factor of secx tanx and use tan2 x = sec2 x− 1,∫
tan2k+1 x secn xdx =

∫
(tan2 x)k secn−1 x secx tanxdx

=

∫
(sec2 x− 1)k secn−1 x secx tanxdx.(5)

Then substitute u = secx⇒ du = secx tanxdx

Useful Integrals.
These integrals are also pretty easy to derive if you forget them,

(6)

∫
tanxdx = − ln | cosx|+ C = ln | secx|+ C.

(7)

∫
secxdx = ln | secx+ tanx|+ C.

(1)
∫

tan3 xdx.
Solution: We use the identity tan2 x = sec2 x− 1,

∫
tan3 xdx =

∫
tanx(sec2 x− 1)dx =

1

2
tan2 x− ln | secx|+ C.



(2)
∫

sec3 xdx.
Solution: We integrate by parts with u = secx⇒ du = secx tanxdx
and dv = sec2 x⇒ v = tanx, then∫

sec3 xdx = secx tanx−
∫

secx tan2 xdx = secx tanx−
∫

secx(sec2 x− 1)dx

= secx tanx−
∫

sec3 xdx+

∫
secxdx = secx tanx−

∫
sec3 xdx+ ln | secx+ tanx|

⇒
∫

sec3 xdx =
1

2
[secx tanx+ ln | secx+ tanx|] + C.


