
Math 112 - 009 F15 Rahman Week4

8.4 Trigonometric Substitutions

Lets begin with an example,

Ex: Consider
∫ √

1− x2dx.
Solution: This reminds us of the identity 1− sin2 θ = cos2 θ, so lets
use the substitution x = sin θ ⇒ dx = cos θdθ.∫ √

1− x2dx =

∫ √
1− sin2 θ cos θdθ =

∫ √
cos2 θ cos θdθ =

∫
cos2 θdθ

=
1

2

[
θ +

1

2
sin 2θ

]
+ C =

θ

2
+ sin θ cos θ =

1

2
sin−1 x+ x

√
1− x2.

The tricky part is going from θ to x. We see that since x = sin θ,

cos θ =
√

1− sin2 θ =
√

1− x2. We can also use our right triangles
to help us.

Let us employ a table of trig substitutions that will help us with the
decision making process.

Expression Substitution Identity

√
a2 − x2 x = a sin θ, −π/2 ≤ θ ≤ π/2 1− sin2 θ = cos2 θ

√
a2 + x2 x = a tan θ, −π/2 < θ < π/2 1 + tan2 θ = sec2 θ

√
x2 − a2 x = a sec θ, 0 ≤ θ < π/2, π ≤ θ < 3π/2 sec2 θ − 1 = tan2 θ

(1) I =
∫ √

9−x2
x2

dx.
Solution: This is of the form of the first case, so we use the substi-
tution: x = 3 sin θ ⇒ dx = 3 cos θdθ,

I =

∫ √
9− 9 sin2 θ

9 sin2 θ
3 cos θdθ =

∫
9 cos2 θ

9 sin2 θ
dθ =

∫
cot2 θdθ =

∫
(csc2 θ−1)dθ = − cot θ−θ+C.

Now we must plug back in for θ. Since x = 3 sin θ, sin θ = x/3,
and we recall that sine is opposite over hypotenuse and cotangent
is adjacent over opposite. We may denote the opposite side as x
and the hypotenuse side as 3, then by the Pythagorean theorem the
adjacent side is

√
9− x2. This gives us, cot θ =

√
9− x2/x, then

I = −
√

9− x2
x

− sin−1
(x

3

)
+ C

Note that we have to substitute back in only for indefinite inte-
grals. For definite integrals it’s easier to just change the limits.

1



(2) I =
∫

dx
x2
√
x2+4

.

Solution: This is of the form of the second case, so we substitute
x = 2 tan θ ⇒ dx = 2 sec2 θdθ,

I =

∫
2 sec2 θdθ

4 tan2 θ
√

4 tan2 θ + 4
=

1

4

∫
sec θdθ

tan2 θ
=

1

4

∫
cos θdθ

sin2 θ
.

We solve this via u-sub with u = sin θ ⇒ du = cos θdθ.

I =
1

4

∫
du

u2
= − 1

4u
+ C = − 1

sin θ
+ C.

Since x = 2 tan θ, tan θ = x/2, so sin θ = x/
√
x2 + 4, then

I = −
√
x2 + 4

4x
+ C.

(3) I =
∫

xdx√
x2+4

.

Solution: Thought we had to use a trig substitution didn’t ya?
NOPE! U-Sub! Let u = x2 + 4⇒ du = 2xdx.

I =
1

2

∫
du√
u

=
√
u+ C =

√
x2 + 4 + C.

This shows us that if we take a few seconds to think about a
problem we can find a much easier solution.

(4) I =
∫

dx√
x2−a2 .

Solution: This is of the form of the third case, so we substitute
x = a sec θ ⇒ dx = a sec θ tan θ.

I =

∫
a sec θ tan θdθ√
a2 sec2 θ − a2

=

∫
a sec θ tan θdθ

a tan θ
=

∫
sec θdθ = ln | sec θ+tan θ|+C.

Since x = a sec θ, sec θ = x/a, so tan θ =
√
x2 − a2/a, then

I = ln

∣∣∣∣∣xa +

√
x2 − a2
a

∣∣∣∣∣+ C.

Notice, a coshx is an equivalent answer, but the preferable method
is the way it was done here.



(5)
∫ 3
√
3/2

0
x3dx

(4x2+9)3/2
.

Solution: This is of the form of the second case, but here we have
a coefficient in front of the x term. We can either pull the 4 out
and then start our calculations or we can see what x has to be with
the 4 there. It’s much easier to come up with a substitution for
x that produces a desired result than to pull the coefficient out.
Notice that we need the coefficient in front of the tan2 term (after
substitution of course) to be 9, so we have that 4x2 = 9 tan2 θ, then
x = (3/2) tan θ ⇒ dx = (3/2) sec2 θdθ.

I =

(
3

2

)4 ∫ π/3

0

tan3 θ sec2 θdθ

(9 tan2 θ + 9)3/2
=

(
3

2

)4 ∫ π/3

0

tan3 θ sec2 θdθ

33 sec3 θ
=

3

16

∫ π/3

0

tan3 θ

sec θ
dθ

=
3

16

∫ π/3

0

sin3 θ

cos2 θ
dθ =

3

16

∫ π/3

0

1− cos2 θ

cos θ
sin θdθ

This is our usual trig integral where u = cos θ ⇒ du = − sin θdθ,

I = − 3

16

∫ 1/2

1

1− u2

u2
du =

3

16

[
u+

1

u

]1/2
1

=
3

32
.

(6) I =
∫

xdx√
3−2x−x2 .

Solution: This one is going to take a bit of ingenuity. Lets tinker
with 3− 2x−x2 = 3− (x2 + 2x). Notice we can get a perfect square
if we add a 1 to x2 + 2x, but if we add a 1 we must also “subtract”
a 1, so 3− 2x− x2 = 3− (x2 + 2x+ 1) + 1 = 4− (x+ 1)2. Now, let
u = x+ 1⇒ du = dx, then

I =

∫
(u− 1)du√

4− u2
.

This is precisely the form of the first case, so we substitute u =
2 sin θ ⇒ du = 2 cos θdθ.

∫
2 sin θ − 1√
4− 4 sin2 θ

2 cos θdθ =

∫
2 sin θ − 1

2 cos θ
2 cos θdθ = −2 cos θ − θ + C

Since u = 2 sin θ, sin θ = u/2, then 2 cos θ =
√

4− u2, so

I = −
√

4− u2 − sin−1
(u

2

)
+ C =

√
3− 2x− x2 − sin−1

(
x+ 1

2

)
+ C.



8.5 Integration of Rational Functions by Partial Fractions

Lets use the following example as motivation:

Ex: Consider I =
∫

x+5
x2+x−2dx.

Solution: Notice we can easily factor the denominator into x2 +
x − 2 = (x − 1)(x + 2). Then we know that this looks like the
common denominator of the sum of two fractions. Lets consider
1

x−1 + 1
x+2 = 2x+1

(x−1)(x+2) . This is clearly not what we want, but this

gives us an indication of the form of the fractions, namely

x+ 5

x2 + x− 2
=

A

x− 1
+

B

x+ 2
=
B(x− 1) +A(x+ 2)

(x− 1)(x+ 2)
=

(A+B)x+ (2A−B)

x2 + x− 2
.

where A and B are some constants. Our task now is to solve
for A and B. We notice that we must equate the numerators, i.e.
x+ 5 = (A+B)x+ (2A−B), so by matching the coefficients we get
two equations: A+B = 1 and 2A−B = 5. From the first equation
we have B = 1−A. Then plugging B into the second equation gives
2A− 1 +A = 3A− 1 = 5⇒ A = 2. Then, B = 1−A = 1− 2 = −1.
Now, we can plug these back into the fraction and put them back in
the integral,

I =

∫
2dx

x− 1
−
∫

dx

x+ 2
= 2 ln |x− 1| − ln |x+ 2|+ C.

We digress slightly to do an example that does not involve partial fractions
but that involves long division - a skill that will be very important for many
of these types of problems,

Ex: I =
∫
x3+x
x−1 dx.

Solution: By long division we get,

x3 + x

x− 1
= x2 + x+ 2 +

2

x− 1
.

If you’re having trouble with long division please come see me,
asap! Then, putting this back into the integral gives,

∫
x3 + x

x− 1
=

∫ (
x2 + x+ 2 +

2

x− 1

)
dx =

1

3
x3+

1

2
x2+2x+2 ln |x−1|+C.

Whenever the highest power in the numerator is greater than
or equal to the highest power in the denominator we must use
long division. Once it’s in a form we can use, we can go ahead and use
partial fractions. We can split the types of problems we will come across on
the exam into four cases detailed bellow.



From this point on we will consider integrals of the type:

(1)

∫
f(x)dx; f(x) =

P (x)

Q(x)
, where P and Q are polynomials.

Case 1.

Suppose Q is a product of distinct linear factors, i.e. Q = (a1x+b1)(a2x+
b2) · · · (akx+ bk). Then,

(2)
P (x)

Q(x)
=

A1

a1x+ b1
+

A2

a2x+ b2
+ · · ·+ Ak

akx+ bk
.

(1) Convert x2+2x−1
2x3+3x2−2x into partial fractions.

Solution: First we factor out the denominator,

2x3 + 3x2 − 2x = x(2x− 1)(x+ 2).

Then,

x2 + 2x− 1

2x3 + 3x2 − 2x
=

x2 + 2x− 1

x(2x− 1)(x+ 2)
=
A

x
+

B

2x− 1
+

C

x+ 2

=
A(2x− 1)(x+ 2) +Bx(x+ 2) + Cx(2x− 1)

x(2x− 1)(x+ 2)

=
(2A+B + 2C)x2 + (3A+ 2B − C)x− 2A

2x3 + 3x2 − 2x
.

Now we equate the numerators to find our constants,

x2 + 2x− 1 = (2A+B + 2C)x2 + (3A+ 2B − C)x− 2A.

Matching the coefficients give us the following equations,

2A+B + 2C = 1

3A+ 2B − C = 2

2A = 1

The easiest one to solve for is A = 1/2. Plugging this into the
first equation gives, B + 2C = 0 ⇒ B = −2C. Plugging this
into the second equation gives, 3/2 − 5C = 2 ⇒ −5C = 1/2 ⇒
C = −1/10⇒ B = 1/5.



(2) Convert 1
x2−a2 into partial fractions.

Solution:

1

x2 − a2
=

1

(x− a)(x+ a)
=

A

x− a
+

B

x+ a
=

(A+B)x+ (A−B)a

x2 − a2
.

Matching the coefficients gives us A+B = 0⇒ A = −B straight
away. Then we plug this into (A−B)a = 2Aa = 1⇒ A = 1/2a⇒
B = −1/2a.

Case 2.

Suppose Q is a product of linear factors, some of which are repeated.
Then, the repeated factors are of this form

(3)
P (x)

Q(x)
=

P (x)

(ax+ b)r
=

A1

ax+ b
+

A2

(ax+ b)2
+ · · ·+ Ar

(ax+ b)r
.

(1) Convert x3−x+1
x2(x−1)3 into partial fractions.

Solution: For this problem we simply put it into partial fractions
form without finding the constants. Notice that the denominator is
already in factored form.

x3 − x+ 1

x2(x− 1)3
=
A1

x
+
A2

x2
+

B1

x− 1
+

B2

(x− 1)2
+

B3

(x− 1)3
.


