
Math 112 - 009 F15 Rahman Week5

8.5 Integration of Rational Functions by Partial Fractions

We begin where we left of last week.

(1) Convert x4−2x3+4x+1
x3−x2−x+1

into partial fractions.
Solution: Notice that we must use long division because the highest
power of the numerator is greater than the highest power of the
denominator,

x4 − 2x3 + 4x+ 1

x3 − x2 − x+ 1
= x+ 1 +

4x

x3 − x2 − x+ 1
.

Now, we factor the denominator,

x3−x2−x+1 = x2(x−1)−(x−1) = (x−1)(x2−1) = (x−1)(x−1)(x+1) = (x−1)2(x+1).

Then,

4x

x3 − x2 − x+ 1
=

4x

(x− 1)2(x+ 1)
=

A

x− 1
+

B

(x− 1)2
+

C

x+ 1

=
A(x− 1)(x+ 1) +B(x+ 1) + C(x− 1)2

(x− 1)2(x+ 1)

=
(A+ C)x2 + (B − 2C)x+ (−A+B + C)

x3 − x2 − x+ 1
.

Equating the numerator gives,

4x = (A+ C)x2 + (B − 2C)x+ (−A+B + C)

Matching the coefficients gives,

A+ C = 0

B − 2C = 4

−A+B + C = 0.

From the first equation we get C = −A, then plugging into the
third equation gives C + B + C = B + 2C = 0 ⇒ B = −2C.
Plugging this into the second equation gives −2C − 2C = −4C =
4⇒ C = −1⇒ A = 1⇒ B = 2.
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Case 3.

Suppose Q is a product of quadratic factors with no repeats, i.e. Q =
(a1x

2 + b1x+ c1)(a2x
2 + b2x+ c2) · · · (akx2 + bkx+ ck). Then,

P (x)

Q(x)
=

P (x)

(a1x2 + b1x+ c1)(a2x2 + b2x+ c2) · · · (akx2 + bkx+ ck)

=
A1x+B1

a1x2 + b1x+ c1
+

A2x+B2

a2x2 + b2x+ c2
+ · · ·+ Akx+Bk

akx2 + bkx+ ck
.(1)

(1) Convert x
(x−2)(x2+1)(x2+4)

into partial fractions.

Solution: For this problem we simply put it into partial fractions
form without finding the constants. Notice that the denominator is
already in factored form.

x

(x− 2)(x2 + 1)(x2 + 4)
=

A

x− 2
+
Bx+ C

x2 + 1
+
Dx+ E

x2 + 4
.

(2) Convert 2x2−x+4
x3+x

into partial fractions.

Solution: First we factor the denominator, x3 + x = x(x2 + 1).
Now, we put this into partial fractions form,

2x2 − x+ 4

x3 + x
=

2x2 − x+ 4

x(x2 + 1)
=
A

x
+
Bx+ C

x2 + 1
=
A(x2 + 1) +Bx2 + Cx

x(x2 + 1)
=

(A+B)x2 + Cx+A

x3 + x
.

Now, equating the numerators gives, 2x2 − x+ 4 = (A+ B)x2 +
Cx+A.

We get that A = 4 and C = −1 straight away from matching
the coefficients in front of x1 and x0. Now, from the x2 coefficient
we have A+B = 4 +B = 2⇒ B = −2.

Case 4.

Suppose Q is product of factors that include repeated quadratic factors.
Then the repeated quadratic factors will be of the form,

(2)
P (x)

Q(x)
=

P (x)

(ax2 + bx+ c)r
=

A1x+B1

ax2 + bx+ c
+

A2x+B2

(ax2 + bx+ c)2
+· · ·+ Arx+Br

(ax2 + bx+ c)r
.

(1) Convert x3+x2+1
x(x−1)(x2+x+1)(x2+1)3

into partial fractions.

Solution: For this problem we simply put it into partial fractions
form without finding the constants. Notice that the denominator is
already in factored form.

x3 + x2 + 1

x(x− 1)(x2 + x+ 1)(x2 + 1)3
=
A

x
+

B

x− 1
+

Cx+D

x2 + x+ 1
+
E1x+ F1

x2 + 1
+
E2x+ F2

(x2 + 1)2
+
E3x+ F3

(x2 + 1)3
.



(2) Convert 1−x+2x2−x3

x(x2+1)2
into partial fractions.

Solution: Notice, the denominator is already factored, so we go
right to it

1− x+ 2x2 − x3

x(x2 + 1)2
=
A

x
+
Bx+ C

x2 + 1
+

Dx+ E

(x2 + 1)2
=
A(x2 + 1)2 + (Bx+ C)x(x2 + 1) +Dx2 + Ex

x(x2 + 1)2

=
(A+B)x4 + Cx3 + (2A+B +D)x2 + (C + E)x+A

x(x2 + 1)2

Equating the numerators gives,

1− x+ 2x2 − x3 = (A+B)x4 + Cx3 + (2A+B +D)x2 + (C + E)x+A.

We get A = 1 for free, and from that we get A+B = 1 +B = 0
⇒ B = −1. We also get C = −1 for free, from which we get
C +E = −1 +E = −1⇒ E = 0. And finally we get 2A+B+D =
2− 1 +D = 1 +D = 2⇒D = 1.

Problems not on the exam, but are important nonetheless.

(1) Solve
∫

4x2−3x+2
4x2−4x+3

dx.
Solution: First and foremost we must use long division because the
highest power in the numerator is equal to the highest power in the
denominator. After doing long division we get,

4x2 − 3x+ 2

4x2 − 4x+ 3
= 1 +

x− 1

4x2 − 4x+ 3
.

Notice, 4x2− 4x+ 3 can not be factored because it’s discriminant
is, b2−4ac = 42−4(4)(3) = −32 < 0 (i.e. the thing under the radical
in the quadratic formula). Recall that we can only factor quadratic
polynomials whose discriminant is greater than or equal to zero.

It’s easy to integrate 1, so lets focus on integrating the second
part, but lets try to put it into a form that will allow us to use a
u-sub.

I =

∫
x− 1

4x2 − 4x+ 3
dx =

∫
x− 1

(2x− 1)2 + 2
.

We get this by completing the square on 4x2 − 4x, that is

4x2−4x = 4(x2−x) = 4

(
x2 − x+

1

4

)
−1 = 4

(
x2 − 1

2

)2

−1 = (2x2−1)−1.

Now we use u-sub where u = 2x− 1⇒ du = 2dx. Then,



I =
1

4

∫
u− 1

u2 + 2
du =

1

4

∫
u

u2 + 2
du− 1

4

∫
1

u2 + 2
du

We know how to solve both integrals. In case you don’t, you must
start coming to office hours.

(2) Solve I =
∫ √x+4

x dx.

Solution: Lets use the u-sub, u2 = x + 4 ⇒ 2udu = dx, plugging
this in gives,

I = 2

∫
u2du

u2 − 4
.

Now, we must use long division to get,

I = 2

∫ (
1 +

4

u2 − 4

)
du = 2u+ 2

∫
4

(u− 2)(u+ 2)
.

Now, we split 4/(u− 2)(u+ 2) into partial fractions,

4

(u− 2)(u+ 2)
=

A

u− 2
+

B

u+ 2
=
A(u+ 2) +B(u− 2)

(u− 2)(u+ 2)
=

(A+B)u+ 2(A−B)

(u− 2)(u+ 2)
.

Equating the numerators gives 4 = (A + B)u + 2(A − B), then
we have that A + B = 0 → B = −A. We plug this into the second
term to get, 2(A−B) = 2(A+A) = 4A = 4⇒ A = 1⇒ B = −1.
After this point we know how to solve the two integrals.



8.7 Numerical Integration

We derived three methods of solving integrals numerically in class. Note:
Midpoint rule isn’t in the book, and therefore you won’t be responsible for
it.

Midpoint rule:
(3)∫ b

a
f(x)dx ≈ ∆x[f(x∗1)+f(x∗2)+· · ·+f(x∗n)]; x∗i =

1

2
(xi+xi+1), ∆x =

b− a
n

Where n is the number of intervals or equivalently the number of “steps”.

(4) Error bound: |EM | ≤
K(b− a)3

24n2
; |f ′′(ξ)| ≤ K, ξ ∈ [a, b].

Where |f ′′(ξ)| is just the maximum of the second derivative in [a, b].

Ex: Consider the integral I =
∫ 2
1

dx
x . We note that the exact value of

this integral is I = ln 2 ≈ .693147.
(a) Approximate the integral via Midpoint rule with n = 5 steps.

Solution: Here a = 1, b = 2, so ∆x = 1/5. Also, clearly
xi = a + i∆x, so x0 = a = 1, x1 = 1.2, x2 = 1.4, x3 = 1.6,
x4 = 1.8, and x5 = b = 2, so x∗1 = 1.1, x∗2 = 1.3, x∗3 = 1.5,
x∗4 = 1.7, x∗5 = 1.9 Then plugging this into the formula gives,

I ≈ 1

5

[
1

1.1
+

1

1.3
+

1

1.5
+

1

1.7
+

1

1.9

]
≈ .691908.

(b) Find the error bound for this approximation.
Solution: Notice that b− a = 1 and n = 5. Now, we must just
find K. To do this we take the second derivative f ′′(x) = 2/x3.
We notice that in [1, 2] this is greatest at ξ = 1, so f ′′(ξ) = 2.
So, we choose K = 2. Plugging these into the formula gives,

|EM | ≤
K(b− a)3

24n2
=

2 · 1
24 · 25

=
1

300
.

(c) Find the smallest n that guarantees |EM | ≤ .0001.
Solution: This is a far more interesting problem. We start
with the formula and put in the quantities we know,

K(b− a)3

24n2
=

1

12n2
≤ .0001⇒ n2 ≥ 1

.0012
⇒ n ≥ 1√

.0012
≈ 28.8

This gives us n = 29.



Trapezoid rule:∫ b

a
f(x)dx ≈ ∆x

2
[f(x0) + 2f(x1) + 2f(x2) + · · ·+ 2f(xn−1) + f(xn)];(5)

∆x =
b− a
n

, xi = a+ i∆x.

Where n is the number of intervals or equivalently the number of “steps”.

(6) Error bound: |ET | ≤
K(b− a)3

12n2
; |f ′′(ξ)| ≤ K, ξ ∈ [a, b].

Where |f ′′(ξ)| is just the maximum of the second derivative in [a, b].

Ex : Take the same integral as in the Midpoint rule example, and answer
the same exact questions.
(a) We already have the quantities we need from the Midpoint rule

example, so we just plug those quantities into the Trapezoid
rule formula,

I ≈ 1

10

[
1 + 2

1

1.2
+ 2

1

1.4
+ 2

1

1.6
+ 2

1

1.8
+

1

2

]
≈ .695635.

(b) For the error bound the difference between trapezoid rule and
midpoint rule is a factor of 2, so plugging into the formula gives
|ET | ≤ 1/150.

(c) We have the same quantities here as in the midpoint rule prob-
lem, so we get n > 40.8⇒ n = 41.

Simpson’s rule:∫ b

a
f(x)dx ≈ ∆x

3
[f(x0) + 4f(x1) + 2f(x2) + · · ·+ 4f(xn−1) + f(xn)];(7)

∆x =
b− a
n

, n ≥ 4and must be even.

Where n is the number of intervals or equivalently the number of “steps”.

(8) Error bound: |ES | ≤
K(b− a)5

180n4
; |f (4)(ξ)| ≤ K, ξ ∈ [a, b].

Where |f (4)(ξ)| is just the maximum of the fourth derivative in [a, b].



Ex : Consider the same integral as the previous two examples.
(a) Approximate this integral with n = 10 steps.

Solution: Here, ∆x = 1/10, and x0 = 1, x1 = 1.1, x2 = 1.2,
x3 = 1.3, x4 = 1.4, x5 = 1.5, x6 = 1.6, x7 = 1.7, x8 = 1.8,
x9 = 1.9, and x10 = 2. Plugging these into the formula gives,

I ≈ 1

30

[
1 + 4

1

1.1
+ 2

1

1.2
+ 4

1

1.3
+ 2

1

1.4
+ 4

1

1.5
+ 2

1

1.6
+ 4

1

1.7
+ 2

1

1.8
+ 4

1

1.9
+

1

2

]
≈ .693150.

(b) Find the smallest n that guarantees |ES | ≤ .0001.
Solution: We have most of the quantities, so we must only look
for K. Taking the fourth derivative gives f (4)(x) = 24/x5. We

see that this is greatest at ξ = 1 for our interval, so f (4)(ξ) = 24,
hence we choose K = 24. Plugging these into the formula gives

|ES | ≤
24

180n4
≤ .0001⇒ n4 ≥ 24

180(.0001)
⇒ n ≥

(
24

180(.0001)

)1/4

≈ 6.04.

So, we have n = 8 because we need an even n.


