
Math 112 - 009 F15 Rahman Week6

8.8 Improper Integrals

Improper integrals are integrals that may blow up. This poses a question,
what is infinity and how do we deal with it? Consider the following example

Ex:
∫∞
1 dx/x2. We know how to integrate this for a finite interval, so

why don’t we do that and then take the infinite limit.

∫ ∞
1

dx

x2
= lim

t→∞

∫ t

1

dx

x2
= lim

t→∞

−1

x

∣∣∣∣t
1

= lim
t→∞

1− 1

t
= 1.

We have two cases of improper integrals. One where the interval is infinite
and another where the interval is finite but the integrand has a discontinuity.

Case 1: Infinite Intervals

a) If

∫ t

a
f(x)dx exists for all t ≥ a, then

∫ ∞
a

f(x)dx = lim
t→∞

∫ t

a
f(x)dx.

b) If

∫ b

t
f(x)dx exists for all t ≤ b, then

∫ b

−∞
f(x)dx = lim

t→−∞

∫ b

t
f(x)dx.

Definition 1. If
∫∞
a f(x)dx and

∫ b
−∞ f(x)dx are convergent if the limit

exists, and divergent if the limit does not exist.

c)If

∫ ∞
a

f(x)dxand

∫ a

−∞
f(x)dx are convergent ,∫ ∞

−∞
f(x)dx =

∫ a

−∞
f(x)dx+

∫ ∞
a

f(x)dx.

Determine whether the following integrals are convergent or divergent:

(1)
∫∞
1 dx/x.

Solution: Following the same procedure as the above example gives,

∫ ∞
1

dx

x
= lim

t→∞

∫ t

1

dx

x
= lim

t→∞
ln |x|

∣∣t
1

= lim
t→∞

ln |t| =∞

(2)
∫ 0
−∞ xe

xdx.
Solution: Notice that we must integrate this by parts with u =
x⇒ du = dx and dv = exdx⇒ v = ex.

∫ 0

−∞
xexdx = lim

t→−∞

∫ 0

t
xexdx = lim

t→−∞
xex|0t−

∫ 0

t
exdx = lim

t→−∞
xex|0t−ex|0t = lim

t→−∞
−tet−1+et.

1



For the first limit we need to employ L’Hôpital’s rule,

lim
t→−∞

tet = lim
t→−∞

t

e−t
= lim

t→−∞

1

−e−t
= lim

t→−∞
−et = 0.

Therefore,
∫ 0
−∞ xe

xdx = −1

(3)
∫∞
−∞

dx
1+x2

.
Solution: Here we need to split the integral in two. The easiest way
to split it is right down the middle,∫ ∞

−∞

dx

1 + x2
=

∫ 0

−∞

dx

1 + x2
+

∫ ∞
0

dx

1 + x2

Lets call the first integral I1 and the second integral I2. We must
integrate these separately,

I1 = lim
t→−∞

∫ 0

t

dx

1 + x2
= lim

t→−∞
tan−1 x|0t = lim

t→−∞
− tan−1 t =

π

2

I2 = lim
t→∞

∫ t

0

dx

1 + x2
= lim

t→∞
tan−1 x|t0 = lim

t→∞
tan−1 t =

π

2

Then, I = I1 + I2 = π.

Lets look at this very special example,

Ex: For what values of p is the integral
∫∞
1 dx/xp?

Solution: Lets assume p 6= 1, since that case is slightly different,
and we have also dealt with that case in a previous example where it
was divergent. First lets integrate and then deal with the two cases
when we take the limit.

∫ ∞
1

dx

xp
= lim

t→∞

∫ t

1
x−pdx = lim

t→∞

x−p+1

−p+ 1

∣∣∣∣t
1

= lim
t→∞

1

1− p

[
1

tp−1
− 1

]
.

If p > 1, p − 1 > 0, then as t → ∞, tp−1 → ∞, so 1/tp−1 → 0,
therefore

∫∞
1

dx
xp = 1

p−1 , and hence it converges.

If p < 1, p− 1 < 0, so as t→∞, 1/tp−1 = t1−p →∞, therefore the
integral diverges. And we know for p = 1, the integral diverges as
well.

We have just proved a theorem, which we state bellow

Theorem 1. Consider
∫∞
1

dx
xp . If p > 1, the integral converges to 1

p−1 ,

otherwise it diverges.

Now, we move on to the second case, which is the case of finite intervals
where the integrand has a discontinuity.



Case 2: Integrands with Discontinuities.

a) If f is continuous in [a, b) and discontinuous at x = b, then

∫ b

a
f(x)dx = lim

t→b−

∫ t

a
f(x)dx.

b) If f is continuous in (a, b] and discontinuous at x = a, then

∫ b

a
f(x)dx = lim

t→a+

∫ b

t
f(x)dx.

Definition 2. The integral
∫ b
a f(x)dx is said to be convergent if the limit

exists, and divergent if the limit does not exist.

c) If f has a discontinuity at c ∈ [a, b] and

∫ c

a
f(x)dx and

∫ b

c
f(x)dx both converge, then∫ b

a
f(x)dx =

∫ c

a
f(x)dx+

∫ b

c
f(x)dx.

Determine whether the following integrals are convergent or divergent:

(1)
∫ 5
2

dx√
x−2 .

Solution: Our discontinuity is at x = 2, so

∫ 5

2

dx√
x− 2

= lim
t→2+

∫ 5

t

dx√
x− 2

= lim
t→2+

2
√
x− 2

∣∣5
t

= lim
t→2+

2(
√

3−
√
t− 2) = 2

√
3.

(2)
∫ π/2
0 secxdx.

Solution: The discontinuity is at x = π/2, so

∫ π/2

0
secxdx = lim

t→(π/2)−

∫ t

0
secxdx = lim

t→(π/2)−
ln | secx+tanx|

∣∣t
0

= lim
t→(π/2)−

ln | sec t+tan t| =∞.

Therefore, it diverges. Notice that we didn’t have to use L’Hôpital’s
rule because both secx and tanx blow up in the same direction,
whereas if they blew up in opposite directions we would have to use
L’Hôpital’s rule.

(3)
∫ 3
0

dx
x−1 .

Solution: Here we have a discontinuity at x = 1, so we must break

the integral up,
∫ 3
0

dx
x−1 =

∫ 1
0

dx
x−1 +

∫ 3
1

dx
x−1 . Lets integrate the first

integral,

∫ 1

0

dx

x− 1
= lim

t→1−

∫ t

0

dx

x− 1
= lim

t→1−
ln |x− 1|

∣∣t
0

= lim
t→1−

(ln |t− 1|) = −∞.



Since one of the integrals diverge the entire integral diverges. No-
tice, if we integrated without breaking the integral up we would have
gotten a false conclusion. Try it out for yourself.

(4)
∫ 1
0 lnxdx.

Solution: Here the discontinuity is at x = 1, and we also must
integrate by parts with u = lnx⇒ du = 1/x and dv = dx⇒ v = x,

∫ 1

0
lnxdx = lim

t→0+

∫ 1

t
lnxdx = lim

t→0+
x lnx

∣∣1
t
−
∫ 1

t
dx = lim

t→0+
−t ln t− 1 + t.

We deal with the first limit using L’Hôpital’s rule,

lim
t→0+

t ln t = lim
t→0+

ln t

1/t
= lim

t→0+

1/t

−1/t2
= lim

t→0+
−t = 0.

Therefore, the integral is convergent and
∫ 1
0 lnxdx = −1.

Comparison Tests.

Many times we may not be able to evaluate an integral or an integral may
be too difficult to evaluate in a reasonable time frame, but we would still
like to know the behavior of the integral, which translates to the behavior
of certain differential equations.

Theorem 2. Direct comparison test: If f, g are continuous with f ≥ g ≥ 0
for x ≥ a,

a)

∫ ∞
a

f(x)dx converges ⇒
∫ ∞
a

g(x)dx converges.

b)

∫ ∞
a

g(x)dx diverges ⇒
∫ ∞
a

f(x)dx diverges.

For the following examples, state whether or not the integral converges
or diverges, and explain why.

(1)
∫∞
0 e−x

2
dx.

Solution: We can’t evaluate this directly with the methods we have
learned thus far, so we must use a comparison test. Notice, for x ≥ 1,

e−x ≥ e−x
2
, and we can prove that

∫∞
1 e−x converges. Now, if we

weren’t sure about the convergence we could go ahead and use the
limit comparison test. To prove that this converges we just take the
integral,

∫ ∞
1

e−xdx = lim
t→∞

∫ t

1
e−xdx = lim

t→∞
(e−1 − e−t) = e−1.



Therefore, by the direct comparison test,
∫∞
0 e−x

2
dx converges.

(2)
∫∞
1 [(1 + e−x)/x]dx.

Solution: Notice, this integral would be a pain to evaluate, but

we get a feeling that it diverges. Now, 1+e−x

x ≥ 1
x because the

exponential function is always positive. Now, we know that
∫∞
1 dx/x

diverges because p = 1. Therefore, by the direct comparison test∫∞
1 [(1 + e−x)/x]dx diverges.

Theorem 3. Limit comparison test: If f, g are continuous and limx→∞ f(x)/g(x) =
L, then either,

∫∞
a f(x)dx and

∫∞
a g(x)dx, both converge or both diverge.

For the following examples, state whether or not the integral converges
or diverges, and explain why.

(1)
∫∞
1

√
x2+1
x3

dx.
Solution: Here the root gives us some difficulty in finding a di-
rect comparison, but we can find something that would work for
limit comparison. Since the problem is in the numerator, lets divide
through by the highest power of the numerator,

√
x2 + 1

x3
=

√
1 + 1/x2

x2
∼ 1

x2
.

Now we must take the limit of the ratios to prove that this is a
valid comparison,

lim
x→∞

√
x2 + 1/x3

1/x2
= lim

x→∞

√
x2 + 1

x
= lim

x→∞

√
1 +

1

x2
= 1.

Since this is a valid comparison, and we know that
∫∞
1 dx/x2

converges because p > 1, by the limit comparison test
∫∞
1

√
x2+1
x3

dx
also converges.

(2)
∫∞
1

x√
x3+2

dx.

Solution: Here the problem is with the denominator, so lets divide
through by the highest power of the denominator,

x√
x3 + 2

=
x/
√
x3

√
x3 + 2/

√
x3

=
1/
√
x√

1 + 2/x3
∼ 1√

x
.

Now we take the limit of the ratios,

lim
x→∞

x/
√
x3 + 2

1/
√
x

= lim
x→∞

√
x3√

x3 + 2
= lim

x→∞

1√
1 + 2/x3

= 1.

Now,
∫∞
1 dx/

√
x diverges because p < 1, so by the limit compar-

ison test,
∫∞
1

x√
x3+2

dx.



10.1 Sequences

Sequences are just functions, except as opposed to standard functions
whose domains are the real numbers, the domain for sequences are the inte-
gers. So, we can think of them as regular functions, but we must be careful
in certain instances.

Lets quickly go through a few different ways of representing a sequence,

a)
{

n
n+1

}∞
n=1

; an = n
n+1 ;

{
1
2 ,

2
3 , · · · ,

n
n+1 , · · ·

}
b)

{
(−1)n(n+1)

3n

}∞
n=1

; an = (−1)n(n+1)
3n ;

{
−2

3 ,
3
9 ,−

4
27 , · · · ,

(−1)n(n+1)
3n , · · ·

}
c)

{√
n− 3

}∞
n=3

; an =
√
n− 3, n ≥ 3;

{
0, 1,
√

2,
√

3, . . . ,
√
n− 3, . . .

}
d)

{
cos nπ6

}∞
n=0

; an = cos nπ6 , n ≥ 0
{

1,
√
3
2 ,

1
2 , 0, . . . , cos nπ6 , · · ·

}
An important skill to have is deriving a general formula for a sequence

from looking at a few terms of the sequence,

Ex: Find a formula for
{
3
5 ,−

4
25 ,

5
125 ,−

6
625 ,

7
3125 , · · ·

}
.

Solution: The first thing we notice is that there is an alternating
sign, and since the first element (n=1) is positive, we need to start
of with an even power of −1, so (−1)n−1 works. Notice we could
have also used (−1)n+1. We also notice that the denominators are
respective powers of 5, so the denominator must be 5n. Now, we
notice that the numerator starts with 3 and goes up by one ever
time, so the numerator is n+ 2, then an = (−1)n−1 n+2

5n .

We can also take limits of sequences, which is what we are most interested
in for this class,

Ex: Lets take limits of the sequences we’ve seen today,

a) lim
n→∞

n

n+ 1
= 1 b) lim

n→∞
(−1)n

n+ 1

3n
= 0 c) lim

n→∞

√
n− 3 =∞

d) lim
n→∞

cos
nπ

6
DNE e) lim

n→∞
(−1)n−1

n+ 2

5n
= 0.

Just as with standard functions we can define convergence and divergence,

Definition 3. If limn→∞ an = L we say it is convergent, otherwise it is
divergent.

Lets remind ourselves of the standard limit laws,



Theorem 4. If {an} and {bn} are convergent sequences, then

a) lim
n→∞

(an ± bn) = lim
n→∞

an ± lim
n→∞

bn

b) lim
n→∞

can = c lim
n→∞

an

c) lim
n→∞

anbn =
(

lim
n→∞

an)( lim
n→∞

bn

)
d) lim

n→∞

an
bn

=
limn→∞ an
limn→∞ bn

if lim
n→∞

bn 6= 0

e) lim
n→∞

apn =
[

lim
n→∞

an

]p
if p > 0 and an ≥ 0

We also have the squeeze theorem and a very important consequence of
the squeeze theorem,

Theorem 5. If an ≤ bn ≤ cn for n ≥ n0 and limn→∞ an = limn→∞ cn = L,
then limn→∞ bn = L.

Theorem 6. If limn→∞ |an| = 0, then limn→∞ an = 0.

(1) Let’s do a few more easy example before getting to the tough ones,

a) lim
n→∞

lnn

n
= lim

n→∞

1/n

1
= 0 b) lim

n→∞
(−1)n DNE c) lim

n→∞

(−1)n

n
= 0.

(2) Does an = n!
nn diverge or converge?

Solution: This is a tough one, and we may not be able to see what
is going on right away, so it’s a good idea to write down the first
few terms for the nth element of the sequence, an = 1·2·3·····n

n·n·n·····n . Now,
we get a better idea of what’s going on. Lets factor out 1/n, since
we know what happens to that sequence. If we do this, we notice
2·3·····n
n·n·····n ≤ 1 for n ≥ 1. Then our sequence is always positive, and

lim
n→∞

an = lim
n→∞

1 · 2 · 3 · · · · · n
n · n · n · · · · · n

= lim
n→∞

1

n

(
2 · 3 · · · · · n
n · n · · · · · n

)
≤ lim

n→∞

1

n
= 0.

Therefore, our sequence too, converges to 0.
(3) For what values of r does the sequence an = rn converge?

Solution: Lets take some different cases. If |r| < 1, then limn→∞ r
n =

0. If |r| > 1, then limn→∞ r
n =∞. If r = 1, limn→∞ r

n = 1. Finally,
if r = −1, limn→∞ r

n does not exist. So, it converges for |r| < 1 and
r = 1.


