
Math 112 - 009 F15 Rahman Week7

10.1 Sequences (continued)

Monotonic Sequences. What if we couldn’t take the limit of a sequence,
but we knew some things about the function and wanted to analyze the
behavior. The following definitions and theorem will help us deal with this.

Definition 1. A sequence an is called nondecreasing(think increasing) if
an ≤ an+1 for all n ≥ 1, i.e. a1 ≤ a2 ≤ a3 ≤ · · · . It is called nonincreasing
(think decreasing) if an ≥ an+1 for all n ≥ 1, i.e. a1 ≥ a2 ≥ a3 ≥ · · · . These
types of sequences are collectively called monotonic sequences.

(1) Is 3/(n + 5) increasing or decreasing?
Solution: For this case it’s easiest to compare the nth term and the
(n + 1)th term. To do this we simply plug in and we notice,

3

n + 5
>

3

(n + 1) + 5
=

3

n + 6
.

Since this is true for all n ≥ 1, the sequence is decreasing.

(2) Show
{

n
n2+1

}∞
n=1

is decreasing.

Solution: For this it’s easier to take the derivative,(
n

n2 + 1

)′
=

1− n2

(n2 + 1)2
< 0; forn > 1.

Therefore, the sequence is decreasing.

Definition 2. A sequence an is said to be bounded above if there is an M
such that an ≤ M for all n ≥ 1, and bounded below if there is an m such
that an ≥ m for all n ≥ 1.

Theorem 1. Every bounded monotonic sequence is convergent.
Difference Equations (aka Recurrence Relations, aka Recursive
Formula).

These types of sequences come up often in various applications. The
idea is that subsequent elements in the sequence will depend on previous
elements in the sequence. We can think of the (n + 1)th term as a function
of a combination of other terms, i.e. an+1 = f(an, an−1, . . . , a1).

(1) Lets try to find the limit of the following difference equation: an+1 =
(an+6)/2. Notice that if the limit exists, limn→∞ an+1 = limn→∞ an =
a∗. Here, a∗ is called the fixed point of the difference equation. Now,
we can plug this in and find the value for it,

a∗ =
1

2
(a∗ + 6)⇒ a∗ = 6.
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Examples From the Book.

46) Notice limn→∞
∣∣ sin2 n

2n

∣∣ ≤ limn→∞
1
2n = 0⇒ limn→∞

sin2 n
2n = 0.

47) limn→∞
n
2n = limn→∞

n
en ln 2 = limn→∞

1
ln 2en ln 2 = 0.

68) limn→∞ ln
(
1 + 1

n

)n
= limn→∞ n ln

(
1 + 1

n

)
= limn→∞

ln(1+1/n)
1/n =

limn→∞
−1/(n2+n)
−1/n2 = limn→∞

n2

n2+n
= limn→∞

1
1+1/n =

1.

71) For this problem we must take eln, then take the limit

lim
n→∞

(
xn

2n + 1

)1/n

= lim
n→∞

eln(x
n/(2n+1))n = elimn→∞ ln(xn/(2n+1))/n.

Lets first compute the limit then plug it back in,

lim
n→∞

ln(xn/(2n + 1))

n
= lim

n→∞

ln(xn)− ln(2n + 1)

n
= lim

n→∞

n lnx− ln(2n + 1)

n

= lim
n→∞

lnx− 2/(2n + 1)

1
= lim

n→∞
lnx− 2

2n + 1
= lnx.

Plugging this back in gives, elnx = x.
72) For this we must use our eln trick again,

lim
n→∞

(
1− 1

n2

)n

= lim
n→∞

eln(1−1/n
2)n = elimn→∞ n ln(1−1/n2).

So, lets look at the limit then plug it back in,

lim
n→∞

ln(1− 1/n2)

1/n
= lim

n→∞

−2/(n− n3)

−1/n2
= lim

n→∞

2n2

n− n3
= lim

n→∞

2

1/n− n
= 0.

Then, plugging back in gives, e0 = 1.
84) Once again,

lim
n→∞

eln(n
2+n)1/n = elimn→∞

1
n
ln(n2+n).

Computing the limit gives,

lim
n→∞

ln(n2 + n)

n
= lim

n→∞

(2n + 1)/(n2 + n)

1
= lim

n→∞

2n + 1

n2 + n
= lim

n→∞

2 + 1/n

n + 1
= 0.

Plugging back in gives, e0 = 1.
90) We have done a problem like this in the improper integrals section.

This reiterates the intimate relationship between integrals and se-
quences. limn→∞

∫ n
1 dx/xp, for p > 1 converges to 1/(p − 1). We

can see this by integrating it.



10.2 Series

A series is a sum of sequential terms. An infinite series can be represented
as such:

∑∞
n=1 an. We also think of series as a sequence of partial sums,

where each partial sum is sN =
∑N

n=1 an. We have to make sure we don’t
confuse these very different sequences. One is a sequence that is being
summed, the other is a sequence of sums.

Definition 3. Given
∑∞

n=1 an, let sn =
∑n

i=1 ai bet the partial sums. If sn
converges and limn→∞ sn = s exists, then we say

∑∞
n=1 an converges and∑∞

n=1 an = s. Otherwise, we say it diverges.

Ex: Consider the series
∑∞

n=1 ar
n−1. This is a very important series

called the geometric series. What does this converge to?
Notice if r = 1, sn = a + a + · · ·+ a = na→ ±∞, so it diverges.

Now, if r = −1, the partial sum will jump between zero and one, so
it also diverges.

If |r| 6= 1, sn = a + ar + ar2 + · · · + arn−1, and rsn = ar +

ar2 + · · · + arn, then sn − rsn = a − arn ⇒ sn = a(1−rn)
1−r . Now, for

−1 < r < 1, rn → 0 as n → ∞, hence limn→∞ sn = a/(1 − r). For
|r| > 1, rn →∞, so sn clearly diverges

Theorem 2. The geometric series
∑∞

n=1 ar
n−1 converges, for |r| < 1 to

(1)

∞∑
n=1

arn−1 =
a

1− r
,

and diverges otherwise.

(1) Find the sum of S = 5− 10/3 + 20/9− 40/27 + · · · .
Solution: Notice that we can immediately factor out a 5, S =
5[1−2/3+4/9−8/27+ · · · ]. Now we notice that we have alternating
sings, so we must have a (−1)n−1 because the first term is positive (if
the first term was negative it would be (−1)n). Next, we notice that
all the terms are powers of 2/3, via the geometric series theorem,
our sum is

∞∑
n=1

5

(
−2

3

)n−1
=

5

1 + 2/3
=

5

5/3
= 3.

(2) Is
∑∞

n=1 22n31−n convergent or divergent?
Solution: This series isn’t in the form of the geometric series, so we
must convert it to that form,

∞∑
n=1

22n31−n =

∞∑
n=1

4n

3n−1
=

∞∑
n=1

4

(
4

3

)n−1
.

This does not converge because 4/3 > 1, so it violates the hypothesis
of the geometric series theorem.



(3) Write 2.317 as a geometric series.
Solution: We must think of this as a constant plus a fraction,

2.317 = 2.3+
17

103
+

17

105
+· · · = 2.3+17

[
1

103
+

1

105
· · ·
]

= 2.3+17

∞∑
n=1

(
1

10

)2n+1

.

(4) For what values of x does
∑∞

n=0 x
n (this is called a power series)

converge?
Solution: This is exactly a geometric series if x were fixed. Now,
we may not be able to see this right away, but if we play around
with the index we see that

(2)
∞∑
n=0

xn =
∞∑
n=1

xn−1 =
1

1− x
; |x| < 1.

The next couple of examples are telescoping and harmonic series. These
will illustrate some concepts that can easily be confused.

(1) Telescoping series:
∑∞

n=1
1

n(n+1) .

Notice, this looks a lot like a partial fraction, so 1
n(n+1) = 1

n−
1

n+1 .

So we get,

∞∑
n=1

1

n(n + 1)
=
∞∑
n=1

1

n
− 1

n + 1
=

(
1− 1

2

)
+

(
1

2
− 1

3

)
+· · ·+

(
1

n
− 1

n + 1

)
= 1− 1

n + 1
→ 1 as n→∞.

(2) Harmonic series:
∑∞

n=1 1/n.
Notice, that the sequence 1/n converges to 0 as n→∞, however

we will show that the series diverges. In order to do this we calculate
the partial sums and put estimates on them, s1 = 1, s2 = 1 + 1/2,
s4 = 1 + 1/2 + (1/3 + 1/4) > 1 + 1/2 + (1/4 + 1/4) = 2, s8 > 1 + 3/2,
s16 > 1 + 4/2, s32 > 1 + 5/2, s64 > 1 + 6/2. So, s2n > 1 + n/2⇒∞
as n→∞. So, by definition, the series diverges.

The following theorems give us a frame work to prove divergence but
NOT convergence.

Theorem 3. If the series
∑∞

n=1 an converges, then limn→∞ an = 0.

Proof. We can calculate the partial sums,

sn = a1 + a2 + · · ·+ an−1 + an

sn−1 = a1 + a2 + · · ·+ an−2 + an−1

Now, if we subtract the two, we get sn − sn−1 = an, so we have a represen-
tation of an from the partial fractions. Now, since the series converges,
the partial sums converge to exactly that sum, so limn→∞ sn = s and
limn→∞ sn−1 = s. Therefore, limn→∞ an = limn→∞ sn − sn−1 = s − s =
0. �

Corollary 1. If limn→∞ an 6= 0 or doesn’t exist, then
∑∞

n=1 an diverges.



Ex: Show
∑∞

n=1
n2

5n2+4
diverges.

Solution: We can just show that the sequence an doesn’t go to zero.

lim
n→∞

n2

5n2 + 4
= lim

n→∞

1

5 + 4/n2
=

1

5
.

Here are some properties of sums that we should keep in mind,

Theorem 4. If
∑

an and
∑

bn converge,
∑

can and
∑

an ± bn converge,
and

(3) a)
∑

can = c
∑

an and b)
∑

(an ± bn) =
∑

an ±
∑

bn.

Ex: Does
∑∞

n=1

(
3

n(n+1) + 1
2n

)
converge? If so, find the sum.

Solution: First we find the two sums individually,

∞∑
n=1

3

n(n + 1)
= 3

∞∑
n=1

1

n
− 1

n + 1
= 3.

∞∑
n=1

1

2n
=

∞∑
n=1

1

2

(
1

2

)n−1
=

1/2

1− 1/2
= 1.

So, the series converges to
∑∞

n=1

(
3

n(n+1) + 1
2n

)
= 4.


