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10.3 Integral test

I can’t quite give the full motivation as I did in class, but basically if we
look at an integral we can approximate it by a sum. Since integrals and
sums are so intimately connected, we can make a conclusion about the sum
from evaluating the integral.

Ex: Lets look at
∑∞

n=1 1/n2. If we look at the partial sums we have
limn→∞ sn < 1+

∫∞
1 dx/x2 because the partial sums will just be right

Riemann sums after the first one. So, if the integral converges the
series will also converge. But we already know the integral converges
since p > 1. So, the series too converges.

We have a similar result for series that diverge, but let’s not go
over that and get straight to the test. To see for yourself test it out
with

∑∞
n=1 1/n.

Theorem 1. Integral test: Suppose f is continuous, positive, and decreasing
on [1,∞) and let an = f(n), then the series

∑∞
n=1 an converges if and only

if the integral
∫∞
1 f(x)dx also converges, i.e.∫ ∞

1
f(x)dx converges ⇒

∞∑
n=1

an converges.(1)

∫ ∞
1

f(x)dx diverges ⇒
∞∑
n=1

an diverges.(2)

(1) Test
∑∞

n=1 1/(n2 + 1)
Solution: We integrate:∫ ∞

1

dx

x2 + 1
= lim

t→∞

∫ t

1

dx

x2 + 1
= lim

t→∞
tan−1 x|t1 = lim

t→∞
(tan−1 t− π/4) =

π

4
.

(2) For what values of p does
∑∞

n=1 1/np converge?
Solution: We have to integrate

∫∞
1 dx/xp, but we already know this

converges for p > 1, and by the integral test, the series too converges
for p > 1 and diverges otherwise. This is called a p-series.

Theorem 2. P-series: The series
∑∞

n=1 1/np converges for p > 1, and
diverges otherwise.

(1)
∑∞

n=1 1/n3 converges because p = 3 > 1.

(2)
∑∞

n=1 1/n1/3 diverges because p = 1/3 < 1.
(3) Test

∑∞
n=1(lnn)/n.

Solution: We have to integrate this,∫ ∞
1

lnx

x
dx = lim

t→∞

∫ t

1

lnx

x
dx = lim

t→∞

1

2
(lnx)2

∣∣∣∣t
1

= lim
t→∞

1

2
(ln t)2 =∞

1



There will be times when we wont be able to find the sum of certain
convergent series. In these cases it is beneficial to estimate the sum. Notice
the bigger partial sum we take, the better the estimate, but how can we
tell how good the estimate is? Since it converges, we can use two integrals
to do this. Notice that s ≤ sn +

∫∞
n f(x)dx and s ≥ sn +

∫∞
n+1 f(x)dx

because these are like left and right hand Riemann estimates for integrals
of monotonic functions.

Definition 1. Suppose
∑∞

n=1 an = s, and sn are it’s partial sums. Then

the remainder of the nth partial sum is Rn = s− sn.

Theorem 3. Remainder: Consider
∑∞ an = s. Suppose f(x) = ak, where

f is continuous, positive, and decreasing for x ≥ n, then

(3)

∫ ∞
n+1

f(x)dx ≤ Rn ≤
∫ ∞
n

f(x)dx.

Ex: Consider
∑∞

n=1 1/n3.
(a) Find the maximum error for n = 10.

Solution: We just plug this into the formula,

R10 ≤
∫ ∞
10

dx

x3
= lim

t→∞

∫ t

10

dx

x3
= lim

t→∞

−1

2x2

∣∣∣∣t
10

= lim
t→∞

−1

2t2
− −1

2 ∗ (10)2
=

1

200
= .005.

(b) How many terms must we take for Rn ≤ .0005?
Solution: Here we bound our formula and see what n has to
be,

Rn ≤
∫ ∞
n

dx

x3
=

1

2n2
< .0005⇒ n2 >

1

.001
= 1000⇒ n >

√
1000 ≈ 31.6.

So, we must take 32 terms.
(c) Now, notice if we add sn to both sides of the inequality we get

bounds on the exact solution, i.e. s10 ≈ 1.1975, so for n = 10.

s10 +

∫ ∞
11

f(x)dx ≤ R10 + s10 ≤ s10 +

∫ ∞
10

f(x)dx

⇒ 1.1975 +
1

242
≤ s ≤ 1.1975 +

1

200

⇒ 1.2016 ≤
∞∑
n=1

1/n3 ≤ 1.2025.



10.4 Comparison tests

This is very similar to integral comparison tests.

Theorem 4. Direct Comparison: Suppose
∑
an and

∑
bn have positive

terms, then

(i) If
∑
bn converges and an ≤ bn for all n, then

∑
an also converges.

(ii) If
∑
bn diverges and an ≥ bn for all n, then

∑
an also diverges.

State whether the following converge or diverge, and state the reasoning.

(1)
∑∞

n=1 1/(2n + 1).

Solution: We know 1
2n+1 <

1
2n . Therefore, since

∑∞
n=1 1/2n con-

verges because of p-series, where p > 1,
∑∞

n=1 1/(2n + 1) also con-
verges by the direct comparison test.

(2)
∑∞

n=1
5

2n2+4n+3
.

Solution: Here as usual we take the highest power of the top and
bottom. This will give us 5/2n2. We know the sum of this con-
verges, so for direct comparison we would attempt to show that this
is greater than our original sequence. This is easy to show since all
the terms in the denominator are additive, so 5

2n2+4n+3
≤ 5

2n2 . Since∑∞
n=1 1/n2 converges by p-series because p > 1, the original series

also converges by the direct comparison test.
(3)

∑∞
n=1(lnn)/n.

Solution: Since lnn > 1 for n ≥ 3, lnn
n ≥ 1

n for n ≥ 3. Further,
since

∑∞
n=1 1/n diverges by p-series because p = 1, by the direct

comparison test, the original series converges as well. Notice that
we only care about the tail end.

Notice that we can’t use this test on something like
∑∞

n=1 1/(2n − 1), so
we need the limit comparison test,

Theorem 5. Limit comparison: Suppose
∑
an and

∑
bn have positive

terms, and limn→∞ an/bn = c > 0, where c is a finite number. Then,
either both

∑
an and

∑
bn converge or both diverge. Further, if c = 0 and∑

bn converges, then
∑
an converges, and if c =∞ and

∑
bn diverges, then∑

an diverges.

State whether the following converge or diverge, and state the reasoning.

(1)
∑∞

n=1 1/(2n − 1).
Solution: Again we take the highest power of both the top and the
bottom, i.e. 1/2n. Taking the limit gives,

lim
n→∞

1/(2n − 1)

1/2n
= lim

n→∞

2n

2n − 1
= lim

n→∞

1

1− 1/2n
= 1 > 0.

Since
∑∞

n=1
1
2n converges by geometric series because |1/2| < 1, by

the limit comparison test
∑∞

n=1 1/(2n − 1) also converges.



(2)
∑∞

n=1
2n2+3n√

5+n5
.

Solution: As before we take the largest power of the numerator and
largest part of the denominator, i.e. 2n2/n5/2 = 2/

√
n. Taking the

limit gives,

lim
n→∞

(2n2 + 3n)/
√

5 + n5

2/
√
n

= lim
n→∞

2n5/2 + 3n3/2

2
√

5 + n5
= lim

n→∞

2 + 3/n

2
√

5/n5 + 1
= 1.

Since
∑∞

n=1 1/
√
n diverges by p-series because p < 1, by the limit

comparison test,
∑∞

n=1
2n2+3n√

5+n5
also diverges.

10.5 Ratio and Root Tests

Sometimes we need to bring out the big guns,

Theorem 6. Ratio test: Consider
∑
an, and suppose limn→∞ |an+1/an| =

L, then

a) If L < 1, then
∑
an converges absolutely,

b) If L > 1, then
∑
an diverges,

c) and if L = 1, the test is inconclusive.

State whether the following converge or diverge, and state the reasoning.

(1)
∑∞

n=1 n
3/3n.

Solution: We apply the ratio test,

∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣(n+ 1)3

3n+1
· 3n

n3

∣∣∣∣ =
1

3

(
n+ 1

n

)3

=
1

3

(
1 +

1

n

)3

.

Taking the limit of this gives, limn→∞
1
3

(
1 + 1

n

)3
= 1

3 < 1. There-

fore, by the ratio test,
∑∞

n=1 n
3/3n converges absolutely.

(2)
∑∞

n=1 n
n/n!.

Solution: We apply the ratio test,∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣(n+ 1)n+1

(n+ 1)!
· n!

nn

∣∣∣∣ =
(n+ 1)n

nn
=

(
n+ 1

n

)n

=

(
1 +

1

n

)n

.

Taking the limit gives,

lim
n→∞

(
1 +

1

n

)n

= exp

[
lim
n→∞

n ln(1 +
1

n
)

]
,

Now, we look at just the inside,

lim
n→∞

n ln(1 +
1

n
) = lim

n→∞

ln(1 + 1
n)

1/n
= lim

n→∞

1

1 + 1/n
= 1.



then,

lim
n→∞

(
1 +

1

n

)n

= e > 1.

Therefore, by the ratio test,
∑∞

n=1 n
n/n! diverges.

Theorem 7. Root test: Consider
∑
an, and suppose limn→∞

n
√
|an| = L,

then

a) If L < 1, then
∑
an converges absolutely,

b) If L > 1, then
∑
an diverges,

c) and if L = 1, the test is inconclusive.

State whether the following converge or diverge, and state the reasoning.

(1)
∑∞

n=1

(
2n+3
3n+2

)n
.

Solution: We apply the root test,

n
√
|an| = n

√∣∣∣∣ (2n+ 3

3n+ 2

)n ∣∣∣∣ =
2n+ 3

3n+ 2
=

2 + 3/n

3 + 2/n
.

Taking the limit gives, limn→∞
2+3/n
3+2/n = 2

3 < 1. Therefore, by the

root test,
∑∞

n=1

(
2n+3
3n+2

)n
converges absolutely.


