10.6 Alternating Series and Absolute Convergence

A series that has alternating signs, i.e. $\sum (-1)^n b_n$, which means we get cancellations. We, of course, have a test for these situations.

Theorem 1. Alternating series test: Consider the series $\sum (-1)^n b_n$, where $b_n > 0$, and

- (i) $b_{n+1} \leq b_n$ (i.e. b_n are decreasing) for all n > N, where $N \in \mathbb{N}$
- (ii) $\lim_{n\to\infty} b_n = 0$ (i.e. the series b_n converges to 0),

then $\sum (-1)^n b_n$ converges.

State whether the following converge or diverge, and state the reasoning.

- (1) Alternating harmonic series: $\sum_{n=1}^{\infty} (-1)^{n-1}/n$. **Solution**: First we take the limit, $\lim_{n\to\infty} 1/n = 0$. Now, we show the $(n+1)^{\text{th}}$ term is smaller than the n^{th} term, $1/(n+1) \leq 1/n$ for all n. Therefore, by the alternating series test, $\sum_{n=1}^{\infty} (-1)^{n-1}/n$

converges. (2) $\sum_{n=1}^{\infty} \frac{(-1)^n 3n}{4n-1}$. Solution: Lets take the limit of the sequence, $\lim_{n\to\infty} \frac{3n}{4n-1} = \frac{1}{2n-1}$ $\lim_{n\to\infty}\frac{3}{4-1/n}=\frac{3}{4}$. Since this does not converge to 0, the series

will diverge. (3) $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^2}{n^3+1}$.

Solution: Taking the limit gives, $\lim_{n\to\infty} \frac{n^2}{n^3+1} = 0$.

Error estimation:

This may or may not show up on the exam. If it does show up it will be a minor question, so know how to do this, but don't put too much effort into

If $\sum (-1)^n b_n$ satisfies the alternating series test, then the remainder $|R_n| \leq$

Ex: Approximate the sum of $\sum_{n=0}^{\infty} \frac{(-1)^n}{n}$ to three decimal places. **Brief Solution**: We see that $b_7 = 1/5040 < 1/5000 < .0002$, so s_6 (the sixth partial sum) is correct up to three decimal places, which is $s \approx s_6 = .368$.

Definition 1. The series $\sum a_n$ is absolutely convergent if $\sum |a_n|$ converges. Otherwise, if $\sum a_n$, but $\sum |a_n|$ diverges, then $\sum a_n$ is said to be conditionally convergent.

State whether the following are absolutely convergent, conditionally convergent, or divergent.

- (1) $\sum_{n=1}^{\infty} (-1)^{n-1}/n^2$. Taking the absolute value gives, $\sum_{n=1}^{\infty} |(-1)^{n-1}/n^2| = \sum_{n=1}^{\infty} 1/n^2$. We know this converges by p-series because p > 1. Therefore, $\sum_{n=1}^{\infty} (-1)^{n-1}/n^2$ is absolutely convergent.

 (2) $\sum_{n=1}^{\infty} (-1)^{n-1}/n$.
- (2) $\sum_{n=1}^{\infty} (-1)^{n-1}/n$. Taking the absolute value gives, $\sum_{n=1}^{\infty} |(-1)^{n-1}/n| = \sum_{n=1}^{\infty} 1/n$. We know this diverges by p-series because p=1. However, $\sum_{n=1}^{\infty} (-1)^{n-1}/n$ converges by the alternating series test, which we showed further up. Therefore, $\sum_{n=1}^{\infty} (-1)^{n-1}/n$ converges conditionally.

Theorem 2. If $\sum a_n$ converges absolutely, then it converges.

Ex: Does $\sum_{n=1}^{\infty} \frac{\cos n}{n^2}$ converge?

Solution: Lets look at the sum of the absolute values, $\sum_{n=1}^{\infty} \left| \frac{\cos n}{n^2} \right|$.

Now, $\left|\frac{\cos n}{n^2}\right| \leq \frac{1}{n^2}$. We know that $\sum_{n=1}^{\infty} 1/n^2$ converges by p-series

because p > 1. Hence, $\sum_{n=1}^{\infty} \left| \frac{\cos n}{n^2} \right|$ also converges. Therefore since $\sum_{n=1}^{\infty} \frac{\cos n}{n^2}$ converges absolutely, it converges.