
Math 112-014 Rahman Exam III Practice Problem Solutions

Exam III Fall 2016:

(1) Converges by GST since |r| = 1/3 < 1 and
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(2) (a) Converges by GST since |r| = 3/4 < 1 because
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(b) This diverges by the nth term test since
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(3) (a) We compare to 1/n1/3,
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∑∞
n=1 1/n1/3 diverges by p-test since p < 1, so the original series also diverges by LCT.

(b) Notice n/(e−n + n3) ≤ 1/n2 and
∑∞

n=1 1/n2 converges by p-test since p > 1, so the original series
converges by DCT.

(4) This is one of the few problems where we have to use integral test,

lim
t→∞

∫ t

2

dx

x
√

lnx
= lim

t→∞

∫ t

2

du√
u

= lim
t→∞

2u1/2

∣∣∣∣t
2

= lim
t→∞

2
√

lnx

∣∣∣∣t
2

= lim
t→∞

2
√

ln t− 2
√

ln 2 =∞

So the absolute value diverges by integral test. But now we have to test for conditional convergence of

the original series by AST. Notice limn→∞ 1/n
√

lnn = 0X and 1/((n + 1)
√
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therefore the original series converges conditionally by AST.

(5) This converges absolutely since |f(n)| = f(n) > 0.
(6) Here we use ratio test,
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Hence |x− 1| < 3 = R and the interval of absolute convergence is −2 < x < 4. If x = 4,∑∞
n=1(x− 1)n/(n3n) =

∑∞
n=1 1/n diverges by p-test since p = 1. If x = −2,∑∞

n=1(x − 1)n/(n3n) =
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n=1(−1)n/n converges conditionally by AST since limn→∞ 1/n = 0X and
1/(n+ 1) ≤ 1/n and
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n=1 |(−1)n/n| diverges as shown above. Therefore the radius of convergence is

R = 3 and the interval of convergence is x ∈ [−2, 4).
1



(7) (a) We first find the polynomial of order 3. f(3) = 0, f ′(3) = (x− 2)−1
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(b) We look for the pattern in the nth derivative, f (n)(3) = (−1)n+1(n− 1)!, so we get
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(8) (a) Here we can see that we get a factor of −1/2 at each derivative so, f (n)(1/2) = (−1/2)ne−1/2 then
our Taylor series is
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(b) For the radius of convergence we use ratio test
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Therefore the radius of convergence is R =∞ and the interval of convergence is x ∈ (−∞,∞)
(9) We use the common Taylor series,
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(10) Now we integrate the above,∫
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(11) Now we need to find the remainder in order to get the proper approximation error,
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Since this cannot be solved easily, we just plug in values of n until we get the sufficient error.
n = 0⇒ |Error| ≤ 1/10 and n = 1⇒ |Error| ≤ 1/(24 · 9) < 1/100. So, n = 1 works, i.e.∫

cos(x2)dx ≈ x− x5
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