MATH 112-014 RAHMAN Exam III Practice Problem Solutions

Exam III Fall 2016:

(1) Converges by GST since |r| =1/3 < 1 and
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(2) (a) Converges by GST since |r| =3/4 < 1 because
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(b) This diverges by the nth term test since
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(3) (a) We compare to 1/n'/3,
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> 1/n'/3 diverges by p-test since p < 1, so the original series also diverges by LCT.
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(b) Notice n/(e™™ +n?) < 1/n? and > 7, 1/n? converges by p-test since p > 1, so the original series
converges by DCT.
(4) This is one of the few problems where we have to use integral test,
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So the absolute value diverges by integral test. But now we have to test for conditional convergence of

the original series by AST. Notice lim, o 1/nvInn =0v and 1/((n + 1){/In(n + 1)) < 1/nvVInnv,
therefore the original series converges conditionally by AST.
(5) This converges absolutely since |f(n)| = f(n) > 0.

(6) Here we use ratio test,
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Hence |z — 1| < 3 = R and the interval of absolute convergence is —2 < x < 4. If z =4,
Yo (z—1)"/(n3") =37 1/n diverges by p-test since p = 1. If v = =2,
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Yo (x—=1)"/(n3") = > 2 (=1)"/n converges conditionally by AST since lim, o 1/n = 0v" and

1/(n+1) <1/nand ), |[(—1)"/n| diverges as shown above. Therefore the radius of convergence is

R = 3 and the interval of convergence is x € [—2,4).
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(7) (a) We first find the polynomial of order 3. f(3) =0, f'(3) = (z —2)7"| _, =1,
f'3)=—(x—2)72| _,=—1,and f"(3) =2(z —2)7%| _, =2, s0
1 1
Py(xz) = (z—3) — 5(9& —3)* + g(x —3)%,
(b) We look for the pattern in the nth derivative, f™(3) = (=1)""'(n — 1)!, so we get
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(8) (a) Here we can see that we get a factor of —1/2 at each derivative so, f(™(1/2) = (—1/2)"e~'/? then

our Taylor series is
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(b) For the radius of convergence we use ratio test
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Therefore the radius of convergence is R = co and the interval of convergence is z € (—o0, 00)
(9) We use the common Taylor series,
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(10) Now we integrate the above,
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(11) Now we need to find the remainder in order to get the proper approximation error,
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Since this cannot be solved easily, we just plug in values of n until we get the sufficient error.
n =0 = |Error| <1/10 and n = 1 = |Error| < 1/(24-9) < 1/100. So, n =1 works, i.e.
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