
Math 112-014 Rahman Exam 3 S17 Solutions

(1) Here we employ ratio test,
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Then the radius of convergence is R = 3 .

If x = 3,
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If x = −3,
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so the power series converges conditionally at x = −3 by AST.

Therefore the interval of convergence is −3 < x ≤ 3 .

(2) (a) The sum converges by GST since |r| = 1/4 < 1, and the sum is 1/2
1+1/4 = 2/5.

(b) The sum diverges by the nth term test since limn→∞ 1/(10 + e2/n) = 1/11 6= 0.

(3) We use LCT to test absolute convergence
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n=1 diverges by p-test since p = 1, so the original series cannot be absolutely convergence.
Now lets test conditional convergence, limn→∞ 1/(2n+ 3) = 0X and 1/(2(n+ 1) + 3) ≤ 1/(2n+ 3)X. So the series is

conditionally convergent by AST.

(4) The series is convergence since ratio test implies absolute convergence.

(5) (a) Taking the first three derivatives gives us f(π/4) =
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(b) Notice that this is not an alternating series and that we are given a point instead of an interval so in order to take

the remainder we need to bound the fourth derivative,
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(6) Lets try to get what the nth derivative is, f(3) = 1/9, f ′(x) = −2x−3, . . . , f (n)(x) = (−1)n(n + 1)!x−(n+2), so
f (n)(3) = (−1)n(n+ 1)!3−(n+2) so the Taylor series is
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(7) (a) We know what sine is, so
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(b) Now we use ratio test,
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So the radius of convergence is R =∞ and the interval of convergence is −∞ < x <∞ .

(8) This is an example where LCT doesn’t work. We use DCT,
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Since
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n=1 1/n3/2 converges by p-test since p > 1, we use the RHS, and this to converges by p-test. So, by DCT the
original series also converges.

(9) It’s a polynomial, so f(x) = x− xk/k!.

1


