
Math 112 Rahman Week2

6.2 Cylindrical Shells

Another method to do volumes of revolutions is through cylindrical shells. This method is a lot less
intuitive, and hence requires more practice. Basically think of infinitesimal cylinders filling up a region. We
know the area of the side of the cylinder is A = 2πrh. So, by summing up these infinitesimal cylinders we
get the following formulas for rotation about the y-axis and x-axis respectively,

V =

∫ b

a

2πxh(x)dx (1)

V =

∫ β

α

2πyh(y)dy (2)

The next few problems for rotation about the axes were done in class.

5) r(x) = x and h(x) =
√
x2 + 1, so the area is A = 2πx

√
x2 + 1, then

V = π

∫ √3

0

2x
√
x2 + 1dx

We solve this via u-sub with u = x2 + 1⇒ du = 2xdx,

V = π

∫ 4

1

u1/2du =
2π

3
u3/2

∣∣∣∣4
1

=
16π

3
− 2π

3
=

14π

3
.

17) Intersection: 2y − y2 = 0 ⇒ y(y − 2) = 0 ⇒ y = 0, 2. r(y) = y, h(y) = 2y − y2, then the area is
A = 2π

[
2y2 − y3

]
. So, the volume is

V = 2π

∫ 2

0

(2y2 − y3)dy = 2π

[
2

3
y3 − 1

4
y4
]2
0

= 2π

[
16

3
− 4

]
=

8π

3
.

29) Intersection: x = x2 ⇒ x2 − x = x(x − 1) = 0 ⇒ x = 0, 1. r(x) = x, and h(x) = x − x2 ⇒ A =
2π[x2 − x3], then

V = 2π

∫ 1

0

(x2 − x3)dx = 2π

[
1

3
x3 − 1

4
x4
]1
0

=
π

6
.

What happens if the line of rotation is not one of the axes? Suppose the line of rotation is x = x0, then
in general |x0 − x|.

33) Intersection: y − y3 = 0 ⇒ y(1 − y)(1 + y) = 0 ⇒ y = 0,±1, r(y) = 1 − y and h(y) = y − y3, so
A = 2π(1− y)(y − y3) = 2π[y − y3 − y2 + y4]. Then the volume is

V = 2π

∫ 1

0

(y4 − y3 − y2 + y)dy = 2π

[
1

5
y5 − 1

4
y4 − 1

3
y3 +

1

2
y2
]1
0

= 2π

[
− 1

20
+

1

12

]
=

π

15
.

Now lets do a problem that is much easier with cylindrical shells than disks/washers.

47) r(x) = x and h(x) = e−x
2

, then A = 2πrh = 2πxe−x
2

, so the volume is

V = π

∫ 1

0

2xe−x
2

dx.

We solve this via u-sub, u = x2 ⇒ du = 2xdx, then

V = π

∫ 1

0

e−udu = −πe−u
∣∣∣∣1
0

= −πe−1 + π = π

(
1− 1

e

)
.

1



Additional problems (not from the book):

(1) Find the volume of the region bounded by y = 2x2 − x3 and y = 0 revolved around the y-axis.
Solution: Here the radius of each cylinder will be r = x and height will be h = y = 2x2 − x3.

Then

V =

∫ b

a

2πxf(x)dx =

∫ 2

0

2πx(2x2 − x3)dx =
16

5
π

(2) Find the volume of the region bounded by y = x and y = x2 revolved about the y-axis.
Solution: The radius is r = x and the height is h = x− x2, then

V =

∫ b

a

2πxf(x)dx =

∫ 1

0

2πx(x− x2)dx =
π

6
.

(3) Find the volume of the region bounded by y =
√
x, x = 0, and x = 1 revolved about the x-axis.

Solution: The radius is r = y and the height is h = 1− y2, then

V =

∫ b

a

2πyf(y)dy =

∫ 1

0

2πy(1− y2)dy =
π

2
.

(4) Find the volume of the region bounded by y = x− x2 and y = 0 revolved about the line x = 2.
Solution: Since our axis of revolution is towards the right, the radius of our cylinders will be

r = 2− x and the height is h = y = x− x2. Hence, our area is A = 2π(2− x)(x− x2). Then

V =

∫ 1

0

2π(2− x)(x− x2)dx =
π

2
.

6.3 Arc Length

Arc length is just the sum of infinitesimal small pieces of an arc, so we can derive the formula:

L =

∫ b

a

√
dx2 + dy2. (3)

This can then be parameterized in two main ways,

L =

∫ b

a

√
1 + f ′(x)2dx if f ∈ C1([a, b]), (4)

L =

∫ d

c

√
1 + g′(y)2dy if g ∈ C1([c, d]). (5)

This means that we use the first formula if y = f(x) has a continuous derivative on [a, b] (the interval between
which we are calculating arc length), and we use the second formula if x = g(y) has a continuous derivative
on [c, d]. If it has a continuous derivative for both we may use either formula.

We did the following problems in class,

2) First we take the derivative then plug it into the integral

dy

dx
=

3

2
x1/2 ⇒ L =

∫ 4

0

√
1 +

(
dy

dx

)2

dx =

∫ 4

0

√
1 +

9

4
xdx.

We solve this via u-sub, u = 1 + 9x/4⇒ du = (9/4)dx

L =
4

9

∫ 10

1

√
udu =

8

27
u3/2

∣∣∣∣1
1

0 =
8

27

(
103/2 − 1

)
.



4) For this problem lets do some algebra after taking the derivative,

dx

dy
=

1

2
y1/2− 1

2
y−1/2 ⇒

(
dx

dy

)2

=
1

4
y− 1

2
+

1

4
y−1 ⇒ 1 +

(
dx

dy

)2

=
1

4
y+

1

2
+

1

4
y−1 =

(
1

2
y1/2 +

1

2
y−1/2

)2

.

Then the length is

L =

∫ 9

1

√
1 +

(
dx

dy

)2

dy =

∫ 9

1

(
1

2
y1/2 +

1

2
y−1/2

)
dy =

1

3
y3/2 + y1/2

∣∣∣∣9
1

= 9 + 3− 1

3
− 1 =

32

3
.

Ex: y3 = x2 from (0, 0) to (8, 4).
Failed Solution: If we take the usual route, dy/dx = (2/3)x−1/3. This is clearly not continuous

at x = 0, so we need to find another way.
Solution: Let x = y3/2 ⇒ dx/dy = (3/2)x1/2, then

L−
∫ 4

0

√
1 +

9

4
ydy =

8

27

(
103/2 − 1

)
.

Ex: x =
∫ y
0

√
csc4 t− 1dt from y = π/4 to y = π/2.

Solution: We take the derivative and do some algebra,

dx

dy
=
√

csc4 y − 1⇒ 1 +

(
dx

dy

)2

= csc4 y.

Then the length is

L =

∫ π/2

π/4

csc2 ydy = − cot y

∣∣∣∣π/2
π/4

= 1.

6.4 Areas of a surface of revolution

Areas of revolution are similar to volumes of revolution, except now, we integrate over the length of the
arc, so for a revolution about the x-axis and y-axis respectively

A = 2π

∫ b

a

f(x)
√

1 + f ′(x)2dx (6)

A = 2π

∫ d

c

g(y)
√

1 + g′(y)2dy (7)

However, just like arc lengths, we can parameterize this in many ways, but one convenient way to do it is as
such

A = 2π

∫ d

c

y
√

1 + g′(y)2dy (8)

A = 2π

∫ b

a

x
√

1 + f ′(x)2dx. (9)

We did the following problems in class,

13) We take the derivative and then plug it into the area equation

f ′(x) =
x2

9
⇒ A = 2π

∫ 2

0

x3

3

√
1 +

x4

9
dx

Via u-sub we get u = 1 + x4

9 ⇒ du = 4
9x

3dx, then

A =
π

2

∫ 16/9

1

u1/2du =
π

3
u3/2

∣∣∣∣16/9
1

=
π

3

[
43

33
− 1

]
=

98π

81
.



Ex: y = x2 from (1, 1) to (2, 4) about the y − axis.
Method 1: If we parameterize with x,

A = 2π

∫ 2

1

x
√

1 + 4x2dx =
π

4

∫ 17

5

u1/2du =
π

6
u3/2

∣∣∣∣17
5

=
π

6

(
173/2 − 53/2

)
.

Method 2: If we use the usual parameterization,

A = 2π

∫ 4

1

√
y

√
1 +

1

4y
dy = 2π

∫ 4

1

√
y +

1

4
dy = 2π

∫ 17/4

5/4

u1/2du =
4π

3
u3/2

∣∣∣∣17/4
5/4

=
π

6

(
173/2 − 53/2

)
.

19) We take the derivative and do some algebra

dx

dy
= −(4− y)−1/2 ⇒ 1 +

(
dx

dy

)2

= 1 +
1

4− y
.

Then our area equation is

A = 2π

∫ 15/4

0

2
√

4− y
√

1 +
1

4− y
dy = 4π

∫ 15/4

0

√
4− y + 1dy = 4π

∫ 15/4

0

√
5− ydy.

We solve this via u-sub with u = 5− y ⇒ du = −dy, then

A = −4π

∫ 5/4

5

u1/2du = −8

3
πu3/2

∣∣∣∣5/4
5

= −π 5
√

5

3
+ π

40
√

5

3
=

35
√

5

3
π.

24) For this problem we haven’t learned how to solve the integral, but we can set it up

dy

dx
= − sinx⇒ A = 2π

∫ π/2

−π/2
cosx

√
1 + sin2 xdx.

Ex: x = y4

4 + 1
8y2 between 1 ≤ y ≤ 2 about the x-axis.

Solution: We take the derivative and do some algebra,

dy

dx
= y3 − 1

4y3
⇒ 1 +

(
dx

dy

)2

= 1 + y6 − 1

2
+

1

16y6
= y6 +

1

2
+

1

16y6
=

(
y3 +

1

16y3

)2

Then the area is

A = 2π

∫ 2

1

y

(
y3 +

1

16y3

)
dy = 2π

∫ 2

1

(
y4 +

1

16y2

)
dy = 2π

[
1

5
y5 − 1

16y

]2
1

=
253

20
π


