
Math 112 Rahman Week3

6.5 Work

Work is the sum of forces exerted over a certain distance. It’s induced by an action. For a constant force,
it will be W = Fd, where W is the work, F is the force or equivalently the weight, and d is the distance
traversed. As we saw in class the problems get quite difficult, but the concept is fairly simple: force times
distance. We can basically get two types of problems: 1) The force is found as a function (such as springs)
or 2) We calculate an infinitesimal amount of work and integrate (such as ropes and tanks).

We first did some simple examples

Ex: How much work does it take to lift a 1.2 Kg book 0.7m.
Solution: Assuming g = 10m/s2, the force is F = 12N, then the work is W = Fd = (12)(0.7) =

8.4J.
Ex: How much work does it take to lift a 6lb weight 6ft?

Solution: Here we are already given the weight, which is equivalent to the force it exerts, so
W = Fd = 6 · 6 = 36ft-lb.

Now, what if the force changes as a function of distance? Then we need to add up all parts of the force, so

we get the equation W =
∫ b
a
F (x)dx. For springs we recall Hooke’s law states that a mass on a spring feels a

force proportional to the length that the mass is stretched from the spring’s natural position (i.e. F = kx),
where x is the distance from the natural position and k is the spring constant.

4) Since we know F = kx, for a particular force at a particular length we have k = F/x = (90N)/(1m) =
90N/m. Then the force at any distance will be F (x) = 90x, so the work is

W =

∫ 5

0

F (x)dx =

∫ 5

0

90xdx = 45x2
∣∣∣∣5
0

= 1125.

6) Again, k = F/x = (150lb)/(1/16in) = 16·150lb/in, so for the first part F (1/8) = (16·150lb/in)(1/8in) =
300lb, and the second part is

W (1/8) =

∫ 1/8

0

(16 · 150)xdx = (8 · 150)x2
∣∣∣∣1/8
0

=
150

8
=

75

4
ft− lb

For rope and tank problems we pretend to lift a little piece at a time and integrate over the boundary.

7) The density is ρ = 0.624 N/m, so the weight of some arbitrary ith piece is Fi = (0.624)δx. So the
work for that piece is Wi = Fix

∗
i = [(0.624)δx]x∗i . If we can do this for one piece, we can do it for n

pieces, so W ≈
∑n
i=1 x

∗
i δx. Taking the limit gives us

W = lim
n→∞

n∑
i=1

x∗i δx =

∫ 50

0

(0.624)xdx = (0.312)x2
∣∣∣∣50
0

= (0.312)502 = 780J

9) Again, ρ = 4.5lb/ft⇒ Fi = 4.5δx⇒Wi = (4.5δx)x∗i , then

W =

∫ 180

0

4.5xdx =
9

4
x2
∣∣∣∣180
0

= 9 · 902 = 72, 900ft− lb
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15) Lets define our coordinate system to be 0 at the top and 10 at the bottom. We break the tank up
into circular cylinders, such that the ith cylinder has a height of δxi and a radius of ri. We need to
find ri in terms of xi. We can do this by using similar triangles, i.e. the ratio of the radii will be
equivalent to the ratio of the heights of the big triangle (half the cross-section of the tank) and the
small triangle (half the cross-section of the water). The ratio is

ri
5

=
10− x∗i

10
⇒ ri =

1

2
(10− x∗i ).

Now we know the volume, force, and work of the ith cylinder

Vi = πr2i δxi =
π

4
(10− x∗i )2δxi ⇒ Fi = ρVi =

57

4
π(10− x∗i )2∆xi ⇒Wi = Fix

∗
i =

57

4
πx∗i (10− x∗i )∆xi

Then the work is

W =
57

4
π

∫ 10

0

x(10−x)2dx =
57

4
π

∫ 10

0

(100x−20x2+x3)dx =
57

4
π

[
50x2 − 20

3
x3 +

1

4
x4
]10
0

=
57

4
π[5000−20000/3+2500]

16) The only thing that changes are the limits and the distance traveled, so

Wi = Fi · (4 + xi)⇒W =
57

4
π

∫ 10

5

(4 + x)(100− 20x+ x2)dx

17) This is a much easier problem because the radius doesn’t change, so

Vi = πr2i hi = π102∆xi = 100π∆xi ⇒ Fi = ρvi = 5120π∆xi ⇒Wi = Fixi = 5120πxi∆xi

Then the work is

W = 5120π

∫ 30

0

xdx = 5120π · 1

2
x2
∣∣∣∣30
0

= 2560π · 302ft− lb.

1. 7.3 Hyperbolic Functions

Hyperbolic functions are similar to trigonometric functions, and have the following definitions:
sinhx = 1

2 (ex − e−x) coshx = 1
2 (ex + e−x) tanhx = sinh x

cosh x
cschx = 1/ sinhx sechx = 1/ coshx cothx = 1/ tanhx

It is also useful to know what they look like. You don’t have to be able to graph them precisely, just have
an idea of the sketch. In order to recall what they look like just use the definitions and take the average of
the exponentials.



They are also subject to the following identities:
sinh(−x) = − sinh(x) cos(−x) = coshx cosh2 x− sinh2 x = 1 1− tanh2 x = sech2 x

sinh(x+ y) = sinhx cosh y + coshx sinh y cosh(x+ y) = coshx cosh y + sinhx sinh y
Proving these identities will allow us to understand them better.

Theorem 1. cosh2 x− sinh2 x = 1

Proof.

cosh2 x− sinh2 x =

[
1

2
(ex + e−x)

]2
−
[

1

2
(ex − e−x)

]2
=

1

4
(e2x + 2 + e−2x)− 1

4
(e2x − 2 + e−2x) = 1

�

Theorem 2. 1− tanh2 x = sech2 x

Proof. Here we simply divide the entire equation by cosh2 x,

[cosh2 x− sinh2 x = 1]
1

cosh2 x
⇒ 1− tanh2 x = sech2 x

�

The other identities are proved in a similar manner. Even though proofs don’t appear on exams they will
help you get a better understanding of the concepts.

It’s also important to know the derivatives of hyperbolic functions,
(sinhx)′ = coshx (coshx)′ = sinhx (tanhx)′ = sech2 x

(cothx)′ = − csch2 x (sechx)′ = − sechx tanhx (cschx)′ = − cschx cothx
These can all be derived very easily straight from the definitions. Lets do one example derivative

(cosh
√
x)′ =

1

2
√
x

(sinh
√
x)

8.1 Integration Review

Additional problems that were not done in class:

4) We first simplify the integral,

I =

∫ π/3

π/4

dx

cos2 x tanx
=

∫ π/4

π/3

secxdx =

∫ π/4

π/3

secx
secx+ tanx

secx+ tanx
dx =

∫ π/4

π/3

sec2 x+ secx tanx

secx+ tanx
xdx

Then we can do a u-sub, u = secx+ tanx⇒ du = (sec2 x+ secx tanx)dx, so

I =

∫ π/3

π/4

du

u
= ln |u|

∣∣∣∣π/3
π/4

= ln | secx+ tanx|
∣∣∣∣π/3
π/4

= ln |2 +
√

3| − ln |1 +
√

2|.

18) Let u =
√
y ⇒ du = 1/2

√
y, so

I =

∫
2udu =

∫
eu ln 2 =

1

ln 2
eu ln 2 =

1

ln 2
2u =

1

ln 2
2
√
y

40) Let u = x3/2 ⇒ du = 3
2

√
xdx, then

I =
2

3

∫
du

1 + u2
=

2

3
tan−1 u =

2

3
tan−1(x3/2) + C



8.2 Integration by Parts

The modern notion of integration by parts comes from an extensive theory by Riemann and Stieltjes in
1894, soon after which Stieltjes passed away. The idea is we can integrate over certain functions instead of
just over x. We can think of it as a generalization of “u-sub”.

To derive it, we consider the product rule,

d

dx
[f(x)g(x)] = f(x)g′(x) + g(x)f ′(x)⇒ d[f(x)g(x)] = f(x)g′(x)dx+ g(x)f ′(x)dx

⇒
∫
d[f(x)g(x)] = f(x)g(x) =

∫
f(x)g′(x)dx+

∫
g(x)f ′(x)dx⇒

∫
f(x)g′(x)dx = f(x)g(x)−

∫
g(x)f ′(x)dx

This can be written in shorthand as ∫
udv = uv −

∫
vdu (1)

As discussed in class we generally choose the easiest thing to integrate as dv, and the other as u. We can
use ILATE: InverseLogsAlgebraicTrigonometricExponential, to help determine which is easier to integrate.
Things get easier to integrate as we go to the right, for example, Exponentials are easier to integrate than
Trigonometric functions. But this doesn’t always work! So, only use it as a guide, not even as a rule of
thumb. Also, try to avoid using “tabular”, it doesn’t save that much time and it increases the chance of a
mistake.

Here are some problems we did in class

5) Since polynomials are easier to integrate than logs we use u = lnx ⇒ du = dx/x and dv = xdx ⇒
v = x2/2, then

I =
1

2
x2 lnx

∣∣∣∣2
1

− 1

2

∫ 2

1

xdx = 2 ln 2− 1

4
x2
∣∣∣∣2
1

= 2 ln 2− [1− 1

4
] = 2 ln 2− 3

4
.

11) Let u = tan−1 y ⇒ du = dy/(1 + y2) and dv = dy ⇒ v = y, so

I = y tan−1 y −
∫

ydy

1 + y2

Now we use u-sub, u = 1 + y2 ⇒ du = 2ydy, then

I = y tan−1 y − 1

2

∫
du

u
= y tan−1 y − 1

2
ln |u| = y tan−1 y − 1

2
ln(1 + y2) + C.

27) We first convert this to

I =

∫ π/3

0

x(sec2 x− 1)dx = −1

2
x2
∣∣∣∣π/3
0

+

∫ π/3

0

x sec2 xdx

Now, we employ by parts, u = x⇒ du = dx and dv = sec2 xdx⇒ v = tanx,

I = −π
2

18
+ x tanx

∣∣∣∣π/3
0

−
∫ π/3

0

tanxdx = −π
2

18
+
π

3

√
3−

∫ π/3

0

sinx

cosx
dx

Then we use u-sub, u = cosx⇒ du = − sinxdx,

I = −π
2

18
+
π

3

√
3−

∫ 1/2

1

du

u
= −π

2

18
+
π

3

√
3 + lnu

∣∣∣∣1/2
1

33) Let u = (lnx)2 ⇒ 2(lnx)/x and dv = xdx⇒ v = x2/2, then

I =
1

2
x2(lnx)2 −

∫
x lnxdx

This was already solved in problem 5, so

I =
1

2
x2(lnx)2 − 1

2
x2 lnx+

1

4
x2 + C

37) Here we don’t need by parts, we can just use u-sub, u = x4 ⇒ du = 4x3, then

I =
1

4

∫
eudu =

1

4
eu + C =

1

4
ex

4

+ C.



39) We use only u-sub again, u = x2 + 1⇒ du = 2xdx, then

I =
1

2

∫
(u− 1)

√
udu =

1

2

∫
(u3/2 − u1/2)du =

1

2

[
2

5
u5/2 − 2

3
u3/2

]
+ C =

1

5
(x2 + 1)5/2 − 1

3
(x2 + 1)3/2 + C.

29) First we do a u-sub, θ = lnx⇒ dθ = dx/x, so x = eθ ⇒ dx = eθdθ. Therefore our integral becomes
I =

∫
eθ sin θdθ. Now we can use by parts, u = sin θ ⇒ du = cos θdθ and dv = eθdθ ⇒ v = eθ,

I = eθ sin θ −
∫
eθ cos θdθ

Now we use by parts again, but remember try to avoid tabular, u = cos θ ⇒ du = − sin θdθ and
dv = eθdθ ⇒ v = eθ, so

I = eθ sin θ −
[
eθ cos θ +

∫
eθ sin θdθ

]
= eθ sin θ −

[
eθ cos θ + I

]
We notice that by doing the second by parts we get our original integral back, so now we can do
some algebra

2I = eθ sin θ − eθ cos θ ⇒ I =
1

2

[
eθ sin θ − eθ cos θ

]
=

1

2
[x sin(lnx)− x cos(lnx)] .

53) I =
∫ b
a
x sinxdx = −x cosx

∣∣b
a

+
∫

cosxdx = −x cosx+ sinx
∣∣b
a

(a) I = −x cosx+ sinx
∣∣π
0

= π ⇒ A = π

(b) I = −x cosx+ sinx
∣∣2π
π

= −2π − π ⇒ A = 3π

(c) I = −x cosx+ sinx
∣∣3π
2π

= 3π + 2π ⇒ A = 5π

(d) A = (2n+ 1)π; n ∈ Z+; i.e. n = 0, 1, 2, . . .

Additional problems (not in the book)

Ex: I =
∫

lnxdx
Solution: Let u = lnx⇒ du = dx/x and dv = dx⇒ v = x. Then

I = x lnx−
∫
x
dx

x
= x lnx− x+ C

Ex: I =
∫
t2etdt.

Solution: Let u = t2 ⇒ du = 2tdt and dv = etdt⇒ v = et. Then

I = t2et − 2

∫
tetdt

Notice, we need to use by parts again. Let u = t⇒ du = dt and dv = etdt⇒ v = et. Then

I = t2et − 2

[
tet −

∫
etdt

]
= t2et − 2tet + 2et + C.

It may be appealing to do this sort of problem using “tabular integration”, however you should avoid
using this shortcut. If you happen to use it and get it wrong on the exam you will end up losing
more points than if you just did by parts twice, and it doesn’t save you that much time.



Ex I =
∫

sinn xdx.
Solution: This type of example won’t show up on the exam. This is purely theoretical so you

can ignore it, but if you are interested it’s a good problem to test your abstraction abilities.
Let u = sinn−1 x⇒ du = (n− 1) sinn−2 x cosxdx and dv = sinxdx⇒ v = − cosx. Then∫

sinnxdx = − cosx sinn−1 x+ (n− 1)

∫
sinn−2 x cos2 xdx

= − cosx sinn−1 x+ (n− 1)

∫
sinn−2 x(1− sin2 x)dx

= − cosx sinn−1 x+ (n− 1)

∫
sinn−2 x− (n− 1)

∫
sinn xdx

⇒ n sinn xdx = − cosx sinn−1 x+ (n− 1)

∫
sinn−2 xdx

⇒ sinn xdx = − 1

n
cosx sinn−1 x+

n− 1

n

∫
sinn−2 xdx

8.3 Trigonometric Integrals

Lets first look at a few examples

Sines and Cosines.

9) Here we can replace the cos2 x by 1− sin2 x and have a cosx left over

I =

∫
cos3 xdx =

∫
(1− sin2 x) cosxdx =

∫
cosxdx−

∫
sin2 x cosxdx = sinx−

∫
sin2 x cosxdx

Then we can use u-sub, u = sinx⇒ du = cosxdx,

I = sinx−
∫
u2du = sinx− 1

3
u3 + C = sinx− 1

3
sin3 x+ C

11) For this problem we can either substitute for cos2 x or sin2 x, lets go with sine because it produces
a positive derivative for the u-sub,

I =

∫
sin3 x(1− sin2 x) cosxdx =

∫
(sin3 x− sin5 x) cosxdx

Then we have u = sinx⇒ du = cosxdx, then

I =

∫
(u3 − u5)du =

1

4
u4 − 1

6
u6 + C =

1

4
sin4 x− 1

6
sin6 x+ C

17) Here we don’t have a mix of sine and cosine, so we need to use a different identity. How about
sin2 x = 1

2 (1− cos 2x),

I = 8

∫ π

0

[
1

2
(1− cos 2x)

]2
dx = 2

∫ π

0

(1− 2 cos 2x+ cos2 x)dx = 2

∫ π

0

[
1− 2 cos 2x+

1

2
(1 + cos 4x)

]
dx

= 2

[
3

2
x− sin 2x+

1

8
sin 4x

]π
0

= 3π



Strategies for
∫

sinm x cosn xdx

(1) If the power of the cosine term is odd (i.e. n = 2k + 1), save one cosine factor and use cos2 x =
1− sin2 x,∫

sinm x cos2k+1 xdx =

∫
sinm x(cos2 x)k cosxdx =

∫
sinm x(1− sin2 x)k cosxdx (2)

Then substitute u = sinx⇒ du = cosxdx.
(2) If the power of the sine term is odd (i.e. m = 2k + 1), save one sine factor and use sin2 x =

1− cos2 x,∫
sin2k+1 x cosn xdx =

∫
(sin2 x)k cosn xdx =

∫
(1− cos2 x)k cosn x sinxdx (3)

Then substitute u = cosx⇒ du = − sinxdx
(3) If the powers of both sine and cosine are even, use the double-angle formulas:

sin2 x =
1

2
(1− cos 2x) cos2 x =

1

2
(1 + cos 2x) sinx cosx =

1

2
sin 2x

Tangents and Secants.

35) Method1: We can convert this into sines and cosines and use u-sub, u = cosx⇒ du = − sinxdx

I =

∫
sinx

cos4 x
dx = −

∫
du

u4
=

1

3
u−3 + C =

1

3
sec3 x+ C

Method2: We can also separate out a secx tanx and do the u-sub u = secx ⇒ du =
secx tanxdx

I =

∫
sec2 x(secx tanx)dx =

∫
u2du =

1

3
u3 + C =

1

3
sec3 x+ C

37) Here we can substitute u = tanx⇒ du = sec2 xdx,

I =

∫
u2du =

1

3
u3 + C =

1

3
tan3 x+ C

Strategy for
∫

tanm x secn xdx

(1) If the power of the secant term is even (i.e. n = 2k, k ≥ 2), save a factor of sec2 x and use
sec2 x = 1 + tan2 x,∫

tanm x sec2k xdx =

∫
tanm x(sec2 x)k−1 sec2 xdx =

∫
tanm x(1 + tan2 x)k−1 sec2 xdx (4)

Then substitute u = tanx⇒ du = sec2 xdx
(2) If the power of the tangent term is odd (i.e. m = 2k + 1), save a factor of secx tanx and use

tan2 x = sec2 x− 1,∫
tan2k+1 x secn xdx =

∫
(tan2 x)k secn−1 x secx tanxdx =

∫
(sec2 x− 1)k secn−1 x secx tanxdx

Then substitute u = secx⇒ du = secx tanxdx

Useful Integrals
These integrals are pretty easy to derive if you forget them,∫

tanxdx = − ln | cosx|+ C = ln | secx|+ C (5)∫
secxdx = ln | secx+ tanx|+ C. (6)



Here are some more problems we did in class

38) Here we use u = tanx⇒ du = sec2 xdx,

I =

∫
(1 + tan2 x) tan2 x sec2 xdx =

∫
(u2 + u4)du =

1

3
u3 +

1

5
u5 + C =

1

3
tan3 x+

1

5
tan5 x+ C

19) Here we use our double angle formulas

I = 16

∫ [
1

2
(1− cos 2x)

] [
1

2
(1 + cos 2x)

]
dx = 4

∫
(1− cos2 2x)dx = 4x− 4

∫
1

2
(1 + cos 4x)dx

= 4x− 2x− 1

2
sin 4x+ C = 2x− 1

2
sin 4x+ C.

65) We use by parts u = tan2 x⇒ du = 2 tanx sec2 xdx and dv = sinxdx⇒ v = − cosx

I =

∫
sinx tan2 xdx = − cosx tan2 x− 2

∫
���cosx

sinx

���cosx

1

cos2 x
dx = − cosx tan2 x− 2

∫
sinx

cos2 x
dx

Then we use u-sub, u = cosx⇒ du = − sinxdx,

I = − cosx tan2 x+ 2

∫
du

u2
= − cosx tan2 x− 2u−1 + C = − cosx tan2 x− 2 secx+ C.

67) Here we use our double angle formula

I =

∫
x

[
1

2
(1− cos 2x)

]
dx =

∫ (x
2
− x cos 2x

)
dx =

x2

4
−
∫
x cos 2xdx

Now we use by parts, u = x⇒ du = dx and dv = cos 2xdx⇒ v = 1
2 sin 2x

I =
x2

4
− x

2
sin 2x+

1

2

∫
sin 2xdx =

x2

4
− x

2
sin 2x− 1

4
cos 2x+ C

Additional problems (not in the book)

Ex: I =
∫

sin5 x cos2 xdx
Solution: We substitute for sine until there is only one left,

I =

∫
(sin2 x)2 cos2 x sinxdx =

∫
(1− cos2 x)2 cos2 x sinxdx

Then we do u-sub, u = cosx⇒ du = − sinxdx,∫
sin5 x cos2 xdx = −

∫
(1− u2)2u2du = −1

3
u3 +

2

5
u5 − 1

7
u7 + C = −1

3
cos3 x+

2

5
cos5 x− 1

7
cos7 x+ C

Ex: I =
∫ π
0

sin2 xdx
Solution: Again, we use the double angle identity,

I =

∫ π

0

sin2 xdx =
1

2

∫ π

0

(1− cos 2x)dx =

[
1

2

(
x− 1

2
sin 2x

)]π
0

=
π

2

Ex: I =
∫

tan6 x sec4 xdx
Solution: We substitute in sec2 x = 1 + tan2 x until a single sec2 x is left. Then we substitute

u = tanx⇒ du = sec2 xdx

I =

∫
tan6 x(1 + tan2 x) sec2 xdx =

∫
u6(1 + u2)du =

1

7
u7 +

1

9
u9 + C =

1

7
tan7 x+

1

9
tan9 x+ C

Ex:
∫

tan5 θ sec7 θdθ.
Solution: Here we substitute tan2 x = sec2 x− 1 until a single secx tanx remains

I =

∫
tan4 θ sec6 θ(sec θ tan θ)dθ =

∫
(sec2 θ − 1)2 sec6 θ(sec θ tan θ)dθ

Then we use u-sub, u = sec θ ⇒ du = (sec θ tan θ)dθ

I =

∫
(u2 − 1)2u6du =

1

11
u11 − 2

9
u9 +

1

7
u7 + C =

1

11
sec11 x− 2

9
sec9 x+

1

7
sec7 x+ C



Ex: I =
∫

tan3 xdx
Solution: We use the identity tan2 x = sec2 x− 1, and u = tanx⇒ du = sec2 xdx

I =

∫
tanx(sec2 x− 1)dx =

1

2
tan2 x+ ln | cosx|+ C

Ex: I = sec3 xdx
Solution: We integrate by parts with u = secx ⇒ du = secx tanxdx and dv = sec2 x ⇒ v =

tanx, then

I = secx tanx−
∫

secx tan2 xdx = secx tanx−
∫

secx(sec2 x− 1)dx = secx tanx−
∫

sec3 xdx+

∫
secxdx

= secx tanx−
∫

sec3 xdx+ ln | secx+ tanx| = secx tanx+ ln | secx+ tanx| − I

⇒
∫

sec3 xdx =
1

2
[secx tanx+ ln | secx+ tanx|] + C


