
Math 112 Rahman Week7

10.2 Infinite Series

A series is a sum of sequential terms. An infinite series can be represented as such:
∑∞

n=1 an. We also

think of series as a sequence of partial sums, where each partial sum is sN =
∑N

n=1 an. We have to make
sure we don’t confuse these very different sequences. One is a sequence that is being summed, and the other
is a sequence of sums.

Definition 1. Given
∑∞

n=1 an, let sn =
∑n

i=1 ai be the partial sums. If sn converges and limn→∞ sn = s
exists, then we say

∑∞
n=1 an converges and

∑∞
n=1 an = s. Otherwise, we say it diverges.

Ex: Consider the series
∑∞

n=1 a · rn−1. This is a very important series called the geometric series. What
does this converge to?

Notice if r = 1, sn = a+ a+ · · ·+ a = na→ ±∞, so it diverges. Now, if r = −1, the partial sum
will jump between zero and one, so it also diverges.

If |r| 6= 1, sn = a + ar + ar2 + · · · + arn−1, and rsn = ar + ar2 + · · · + arn, then sn − rsn =

a − arn ⇒ sn = a(1−rn)
1−r . Now, for −1 < r < 1, rn → 0 as n → ∞, hence limn→∞ sn = a/(1 − r).

For |r| > 1, rn →∞, so sn clearly diverges.

Theorem 1. The geometric series
∑∞

n=1 ar
n−1 converges for |r| < 1 to

∞∑
n=1

arn−1 =
a

1− r
, (1)

and diverges otherwise.

Ex: Find the sum of S = 5− 10/3 + 20/9− 40/27 + · · · .
Solution: Notice that we can immediately factor out a 5, S = 5[1 − 2/3 + 4/9 − 8/27 + · · · ].

Now we notice that we have alternating signs, so we must have a (−1)n−1 because the first term is
positive (if the first term was negative it would be (−1)n). Next, we notice that all the terms are
powers of 2/3, via the geometric series theorem our sum is

∞∑
n=1

5

(
−2

3

)n−1

=
5

1 + 2/3
=

5

5/3
= 3.

Ex: Is
∑∞

n=1 22n31−n convergent or divergent?
Solution: This series isn’t in the form of the geometric series, so we must convert it into that

form,

∞∑
n=1

22n31−n =

∞∑
n=1

4n

3n−1
=

∞∑
n=1

4

(
4

3

)n−1

.

This does not converge because |r| = 4/3 > 1, so it violates the hypothesis of the geometric series
theorem.

Ex: Write 2.317 as a geometric series.
Solution: We must this as a constant plus a fraction,

2.317 = 2.3 +
17

103
+

17

105
+ · · · = 2.3 + 17

[
1

103
+

1

105
+ · · ·

]
= 2.3 + 17

∞∑
n=1

(
1

10

)2n+1

.

1



Ex: For what values of x does
∑∞

n=0 x
n (this is called a power series) converge?

Solution: This is exactly a geometric series if x were fixed. Now we may not be able to see this
right away, but if we play around with the index we get

∞∑
n=0

xn =

∞∑
n=1

xn−1 =
1

1− x
; |x| < 1. (2)

Ex: Telescoping series:
∑∞

n=1
1

n(n+1) .

Notice this looks a lot like a partial fraction, so 1
n(n+1) = 1

n −
1

n+1 . So we get,

∞∑
n=1

1

n(n+ 1)
=

∞∑
n=1

1

n
− 1

n+ 1
=

(
1− 1

2

)
+

(
1

2
− 1

3

)
+· · ·+

(
1

n
− 1

n+ 1

)
= 1− 1

n+ 1
→ 1 as n→∞. (3)

Ex: Harmonic series:
∑∞

n=1 1/n.
Notice that the sequence 1/n converges to 0 as n → ∞, however we will show that the series

diverges. In order to do this we calculate the partial sums and put estimates on them, s1 = 1,
s2 = 1 + 1/2, s4 = 1 + 1/2 + (1/3 + 1/4) > 1 + 1/2 + (1/4 + 1/4) = 2, s8 > 1 + 3/2, s16 > 1 + 4/2,
s32 > 1 + 5/2, s64 > 1 + 6/2, so s2n > 1 +n/2→∞ as n→∞. So, by definition, the series diverges.

The following two theorems give us a framework to prove divergence, but NOT convergence.

Theorem 2. If the series
∑∞

n=1 an converges, then limn→∞ an = 0.

Proof. We can calculate the partial sums,

sn = a1 + a2 + · · ·+ an−1 + an

sn−1 = a1 + a2 + · · ·+ an−2 + an−1

Now, if we subtract the two, we get sn − sn−1 = an, so we have a representation of an from the partial
fractions. Now, since the series converges, the partial sums converge to exactly that sum, so limn→∞ sn = s
and lim→∞ sn−1 = s. Therefore, limn→∞ an = limn→∞ sn − sn−1 = s− s = 0. �

Corollary 1. If limn→∞ an 6= 0 or does not exist, then
∑∞

n=1 an diverges.

Ex: Show
∑∞

n=1
n2

5n2+4 diverges
Solution: We can just show that the sequence an does not go to zero.

lim
n→∞

n2

5n2 + 4
= lim

n→∞

1

5 + 4/n2
=

1

5
6= 0.

We also have some of the usual arithmetic properties for sums.

Theorem 3. If
∑
an and

∑
bn converge,

∑
can and

∑
an ± bn converge, and

a)
∑

can = c
∑

an and b)
∑

(an ± bn) =
∑

an ±
∑

bn. (4)

Ex: First we find the two sums individually,

∞∑
n=1

3

n(n+ 1)
= 3

∞∑
n=1

1

n
− 1

n+ 1
= 3.

and
∞∑

n=1

1

2n
=

∞∑
n=1

1

2

(
1

2

)n−1

=
1/2

1− 1/2
= 1.

So, the series converges to
∞∑

n=1

(
3

n(n+ 1)
+

1

2n

)
= 4.



10.3 Integral Test

I provided the motivation for integral test in class, so here I’ll just go over the test itself.

Ex: Lets look at
∑∞

n=1 1/n2. If we look at the partial sum we have limn→∞ sn < 1 +
∫∞
1
dx/x2 because

the partial sums are right hand Reimann sums. So, if the integral converges the series will also
converge. But we already know the integral converges since p > 1. So, the series too converges.

We have a similar result for series that diverge, but let’s not go over that and get straight to the
test.

Theorem 4 (Integral test). Suppose f is continuous, positive, and decreasing on [1,∞) and let an = f(n),
then the series

∑∞
n=1 an converges if and only if the integral

∫∞
1
f(x)dx also converges, i.e.

∫ ∞
1

f(x)dx converges ⇒
∞∑

n=1

an converges.

∫ ∞
1

f(x)dx diverges ⇒
∞∑

n=1

an diverges. (5)

Ex: Does the series
∑∞

n=1 1/(n2 + 1) converge?
Solution: We integrate∫ ∞

1

dx

x2 + 1
= lim

t→∞

∫ t

1

dx

x2 + 1
− lim

t→∞
tan−1 x

∣∣t
1

= lim
t→∞

(
tan−1 t− π

4

)
=
π

4
.

Since the integral converges, so does the series by integral test.
Ex: For what values of p does

∑∞
n=1 1/np converge?

Solution: We have to integrate
∫∞
1
dx/xp, but we already know this converges for p > 1, and

diverges otherwise. Therefore, by integral test, the series too converges for p > 1, and diverges
otherwise. This is called a p-series.

Theorem 5 (p-series). The series
∑∞

n=1 1/np converges for p > 1, and diverges otherwise.

Ex:
∑∞

n=1 1/n3 converges by p-test since p = 3 > 1.

Ex:
∑∞

n=1 1/n1/3 diverges by p-test since p = 1/3 < 1.
Ex: Does

∑∞
n=1(lnn)/n converge?

Solution: We have to integrate this,

∫ ∞
1

lnx

x
dx = lim

t→∞

∫ t

1

lnx

x
dx = lim

t→∞

1

2
(lnx)2

∣∣∣∣t
1

= lim
t→∞

1

2
(ln t)2 =∞

Since the integral diverges, the series will also diverge by integral test.

In real life there may be times when we won’t be able to find the sum of certain convergent series. In these
cases it is beneficial to estimate the sum. Notice the bigger partial sum we take, the better the estimate,
but how can we tell how good it is? Since it converges, we can use two integrals to do this. Notice that
s ≤ sn +

∫∞
n
f(x)dx and s ≥ sn +

∫∞
n+1

f(x)dx because these are left and right hand Riemann estimates for
integrals of monotonic functions.

Definition 2. Suppose
∑∞

n=1 an = s, and sn are it’s partial sums. Then the remainder of the nth partial
sum is Rn = s− sn.

Theorem 6 (Remainder). Consider
∑∞

n=1 an = s. Suppose f(x) = ak, where f is continuous, positive, and
decreasing for x ≥ n, then ∫ ∞

n+1

f(x)dx ≤ Rn ≤
∫ ∞
n

f(x)dx. (6)



Ex: Consider
∑∞

n=1 1/n3.
(a) Find the maximum error for s10.

Solution: We just plug this into the formula,

R10 ≤
∫ ∞
10

dx

x3
= lim

t→∞

∫ t

10

dx

x3
= lim

t→∞

−1

2x2

∣∣∣∣t
10

= lim
t→∞

−1

2t2
− −1

2 · 102
=

1

200
= 0.005

(b) How many terms must we take for Rn ≤ 0.0005?
Solution: Here we bound our formula and see what n has to be,

Rn ≤
∫ ∞
n

dx

x3
=

1

2n3
< 0.0005⇒ n2 >

1

0.001
= 1000⇒ n >

√
1000 ≈ 31.6

So, we must take n = 32 terms.
(c) Now, notice if we add sn to both sides of the inequality we get bounds on the exact solution,

i.e. s10 ≈ 1.1975, so for n = 10,

s10 +

∫ ∞
11

f(x)dx ≤ R10 + s10 ≤ s10 +

∫
10∞

f(x)dx

⇒ 1.1975 +
1

242
≤ s ≤ 1.1975 +

1

200
⇒ 1.2016 ≤

∞∑
n=1

1

n3
≤ 1.2025

10.4 Comparison Tests

This is very similar to integral comparison tests.

Theorem 7 (Direct Comparison). Suppose
∑
an and

∑
bn have positive terms, then

(i) If
∑
bn converges and an ≤ bn for all n > N for some N , then

∑
an also converges.

(ii) If
∑
bn diverges and an ≥ bn for all n > N for some N , then

∑
an also diverges.

State whether or not the following converge/diverge, and state why.

Ex:
∑∞

n=1 1/(2n + 1).
Solution: We know 1

2n+1 <
1
2n . Therefore, since

∑∞
n=1 1/2n converges by p-test because p > 1,∑

n=1∞ 1/(2n + 1) also converges by direct comparison.
Ex:

∑∞
n=1

5
2n2+4n+3 .

Solution: Here as usual we take the highest power of the top and bottom. This will give us
5/2n2. We know the sum of this converges, so for direct comparison we would attempt to show that
this is greater than our original sequence. This is easy to show sine all the terms in the denominator
are additive, so 5

2n2+4n+3 ≤
5

2n2 . Since 5
2

∑∞
n=1 1/n2 converges by p-test because p > 1, the original

series also converges by direct comparison.
Ex:

∑∞
n=1(lnn)/n.

Solution: Since lnn > 1 for n ≥ 3, lnn
n ≥ 1

n for n ≥ 3. Further, since
∑∞

n=1 1/n diverges by
p-test because p = 1, by direct comparison, the original series converges as well. Notice that we only
care about the tail end.

Notice that we can’t use this test on something like
∑i

n=1 nfty1/(2n−1), so we need the limit comparison
test.

Theorem 8 (Limit Comparison). Suppose
∑
an and

∑
bn have positive terms, and limn→∞ an/bn = c > 0,

where c is a finite number. Then, either both
∑
an and

∑
bn converges or both diverge. Further, if c = 0

and
∑
bn converges, then

∑
an converges, and if c =∞ and

∑
bn diverges, then

∑
an diverges.

State whether the following converge or diverge, and state the reasoning



Ex:
∑∞

n=1 1/(2n − 1).
Solution: Again, we take the highest power of both the top and bottom; i.e. 1/2n. Taking the

limit gives,

lim
n→∞

1/(2n − 1)

1/2n
= lim

n→∞

2n

2n − 1
= lim

n→∞

1

1− 1/2n
= 1X

Since
∑∞

n=1 1/2n converges by geometric series because |r| = 1/2 < 1, by the limit comparison test,∑∞
n=1 1/(2n − 1) also converges.

Ex:
∑∞

n=1
2n2+3n√

5+n5
.

Solution: In class I showed the proper way to do this, but you can also think about it as taking
the largest power of the numerator and denominator; i.e. 2n2/n5/2 = 2/

√
n. Taking the limit gives,

lim
n→∞

(2n2 + 3n)/
√

5 + n5

2/
√
n

= lim
n→∞

2n5/2 + 3n3/2

2
√

5 + n5
= lim

n→∞

2 + 3/n

2
√

5/n5 + 1
= 1X

Since
∑∞

n=1 1/
√
n diverges by p-test because p < 1, by the limit comparison test,

∑∞
n=1

2n2+3n√
5+n5

also

diverges.

Here are some book problems we did in class:

19) Notice,

0 ≤ sin2 n

2n
≤ 1

2n
.

Since
∑∞

n=1
1
2n converges by geometric series test because |r| = 1/2 < 1, the original series also

converges by DCT.
21) Lets take the limit,

lim
n→∞

2n

3n− 1
= lim

n→∞

2

3− 1/n
=

2

3
6= 0

So, the series diverges by the nth term test.
25) Notice (

n

3n+ 1

)n

=

(
1

3 + 1/n

)n

<

(
1

3

)n

.

Since
∑∞

n=1

(
1
3

)n
converges by geometric series test because |r| = 1/3 < 1, the original series

converges by DCT.
31) Notice

1

1 + lnn
≥ 1

n
.

Since
∑∞

n=1 1/n diverges by p-test because p = 1, the original series diverges by DCT.
40) Here we can just take the highest term in the numerator and denominator,

2n + 3n

3n + 4n
∼ 3n

4n
=

(
3

4

)n

.

Now, lets take the limit of the two ratio of the two functions,

lim
n→∞

(2n + 3n)/(3n + 4n)

3n/4n
= lim

n→∞

8n + 12n

9n + 12n
= lim

n→∞

(8/12)n + 1

(9/12)n + 1
= 1X

Since
∑∞

n=1(3/4)n converges by geometric series test because |r| = 3/4 < 1, the original series
converges by LCT.



10.5 Ratio and Root Tests

Sometimes we need to bring out the big guns.

Theorem 9 (Ratio Test). Consider
∑
an, and suppose limn→∞ |an+1/an| = L, then

a) If L < 1, then
∑
an converges absolutely,

b) If L > 1, then
∑
an diverges,

c) and if L = 1, the test is inconclusive.

State whether the following converge/diverge, and state why.

Ex:
∑∞

n=1 n
3/3n.

Solution: We apply the ratio test,∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣ (n+ 1)3

3n+1
· 3n

n3

∣∣∣∣ =
1

3

(
n+ 1

n

)3

=
1

3

(
1 +

1

n

)3

.

Taking the limit gives,

lim
n→∞

1

3

(
1 +

1

n

)3

=
1

3
< 1.

Therefore, by the ratio test, the series converges absolutely.
Ex:

∑∞
n=1 n

n/n!.
Solution: We apply the ratio test,∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣ (n+ 1)n+1

(n+ 1)!
· n!

nn

∣∣∣∣ =
(n+ 1)n

nn
=

(
n+ 1

n

)n

=

(
1 +

1

n

)n

.

Taking the limit gives

lim
n→∞

(
1 +

1

n

)n

= exp

(
lim

n→∞
n ln

(
1 +

1

n

))
,

Now, we just look at the inside

lim
n→∞

n ln

(
1 +

1

n

)
= lim

n→∞

ln
(
1 + 1

n

)
1/n

= lim
n→∞

1

1 + 1/n
= 1.

Then

lim
n→∞

(
1 +

1

n

)n

= e > 1.

Therefore, the series diverges by ratio test.

Theorem 10 (Root Test). Consider
∑
an, and suppose limn→∞

n
√
|an| = L, then

a) If L < 1, then
∑
an converges absolutely,

b) If L > 1, then
∑
an diverges,

c) and if L = 1, the test is inconclusive.

State whether the following converge or diverge, and state why

Ex:
∑∞

n=1

(
2n+3
3n+2

)n
.

Solution: We apply the root test,

n
√
|an| = n

√∣∣∣∣ (2n+ 3

3n+ 2

)n ∣∣∣∣ =
2n+ 3

3n+ 2
=

2 + 3/n

3 + 2/n
.

Taking the limit gives limn→∞
2+3/n
3+2/n = 2

3 < 1. Therefore, by the root test, the series converges

absolutely.

Here are some problems from the book that we did in class:



19) We use ratio test,∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣����:n+1
(n+ 1)!(−e)−(n+1)

��n!(−e)−n

∣∣∣∣ =

∣∣∣∣(n+ 1)
(−e)n

(−e)n+1

∣∣∣∣ =
1

e
(n+ 1).

Taking the limit of this gives,

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

1

e
(n+ 1) =∞ > 1

Therefore, the series diverges by ratio test.
29) Notice that

1

2n
≤ 1

n
− 1

n2

And 1
2

∑∞
n=1

1
n diverges by p-test since p = 1, therefore the original series diverges by DCT.

35) We use ratio test,∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣ (n+4)!
3!(n+1)!3n+1

(n+3)!
3!n!3n

∣∣∣∣ =

∣∣∣∣ ���
�:n+4

(n+ 4)!

�3!3��n+1���
�:n+1

(n+ 1)!
· �3!��n!��3n

���
�(n+ 3)!

∣∣∣∣ =
n+ 4

3n+ 3

Taking the limit gives us

lim
n→∞

n+ 4

3n+ 3
= lim

n→∞

1 + 4/n

3 + 3/n
=

1

3
< 1.

Therefore, the series converges by ratio test.
57) Notice

∞∑
n=1

(n!)n

(nn)2
=

∞∑
n=1

(
n!

n2

)n

We use root test,

n
√
|an| =

n!

n2
=

1 · 2 · · · (n− 2) · (n− 1) · n
n2

= 1 · 2 · · · (n− 2) ·
(

1− 1

n

)
.

Taking the limit gives us

lim
n→∞

(n− 2)!

(
1− 1

n

)
=∞ > 1.

Therefore, the original series diverges by root test.


