
Math 2450 Rahman Week 10

12.2 Double integration over general regions (continued)

Ex:
∫∫
D

xydA where D is bounded by y = x− 1 and y2 = 2x+ 6.

Again, we have two choices, but which is better?

Notice that in the x-direction it is a pure function of y; i.e., we don’t have any risk of having to split the
interval.
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Ex: Find the volume of the tetrahedron bounded by x + 2y + z = 2,
x = 2y, x = z = 0.

Errata: in section 23 I used the triangle for y = 0 instead of x = 0,
and in section 12 I should have used functions of x not y. Here is the
correct version, and lets think about it in terms vertical or horizontal
cross-sections.

If we sketch it we notice that we get a natural upper and lower limit
for the boundary if we take vertical slices; whereas if we take horizontal
slices we need to split the integral. I will show both ways here.
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We notice that the first way is much easier.

Ex:
∫ 1

0

∫ 1

x
sin(y2)dydx

Solution: Notice that this is a nasty integral. Lets reverse it by writing the domain of the integral and
then writing the equivalent domain if we reverse it.

D = {(x, y)|0 ≤ x ≤ 1, x ≤ y ≤ 1} = {(x, y)|0 ≤ y ≤ 1, 0 ≤ x ≤ y}.
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12.3 Double integrals in polar coordinates

Recall r2 = x2 + y2, x = r cos θ, and y = r sin θ. In class we derived the area element dA = rdrdθ, which
comes from the length of one arc of a circle. What we need to remember is If f is continuous on a polar
rectangle R given by 0 ≤ a ≤ r ≤ b, and α ≤ θ ≤ β, where 0 ≤ β − α ≤ 2π, then∫∫

R

f(x, y)dA =
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Ex:
∫∫
×R(3x+ 4y2)dA where R is bounded by x2 + y2 = 1 and x2 + y2 = 4 in the upper xy-plane.
Solution: Our region will be

R = {(x, y)|y ≥ 0, 1 ≤ x2 + y2 ≤ 4} = {(r, θ)|1 ≤ r ≤ 2, 0 ≤ θ ≤ π}.

then the integral is
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Ex: Find the volume of a solid bounded by z = 0 and z = 1− x2 − y2.
Solution:
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Just like in rectangular, we can have boundaries that are functions. If f is continuous on

D = {(r, θ)|α ≤ θ ≤ β, h1(θ) ≤ r ≤ h2(θ)} (2)

then ∫∫
D

f(x, y)dA =
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∫ h2(θ)

h1(θ)

f(r cos θ, r sin θ)rdrdθ. (3)

Ex: Find the area enclosed by one loop of r = cos θ.
We could do this as a single integral, but lets see how this would work as a double integral.
Solution: To get one loop we would need two consecutive angles where r = 0.
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Ex: Find the volume of the solid that lies under the paraboloid z = x2 +y2, above the xy-plane, and inside
the cylinder x2 + y2 = 2x.
Solution: Lets convert everything into polar first: f(r, θ) = r2, x2 + y2 = 2x ⇒ r2 = 2r cos θ at

the boundary. Then

D = {(r, θ)| − π

2
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2
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Then the integral becomes
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12.4 Surface Area

The surface area is derived similarly to arc length, and therefore have similar formulas. If z = f(x, y),

SA =
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√
f 2
x + f 2
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Ex: Find the surface area of z = x2 + 2y that lies above the triangular region T in the xy-plane with
vertices (0, 0), (1, 0), (1, 1).

Solution: The region can be written as

T = {(x, y)|0 ≤ x ≤ 1, 0 ≤ y ≤ x}.

Then
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Ex: Find the area of the part of the paraboloid z = x2 + y2 that lies under the plane z = 9.
Solution: The boundary of intersection will be x2 + y2 = 9 ⇒ r2 = 9, and
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12.5 Triple integrals

This works just like double and single integrals, so lets skip the B.S. and get straight to doing problems.

Ex: Evaluate the triple integral
∫∫∫
B

xyz2dV where B is the rectangular box

B = {(x, y, z)|0 ≤ x ≤ 1,−1 ≤ y ≤ 2, 0 ≤ z ≤ 3}
Solution: We simply integrate to get∫∫∫

B

xyz2dV =

∫ 3

0

∫ 2

−1

∫ 1

0

xyz2dxdydz =

∫ 3

0

∫ 2

−1

[
1

2
x2
]1
0

yz2dydz =

∫ 3

0

∫ 2

−1

yz2

2
dydz

=

∫ 3

0

[
1

4
y2
]2
−1

z2dz =

∫ 3

0

3

4
z2dz =

z3

4

∣∣∣∣3
0

=
27

4
.

Ex: Evaluate
∫∫∫
E

zdV , where E is the solid tetrahedron bounded by the four planes x = y = z = 0 and

x+ y + z = 1.
Solution: For this one it may be a good idea to sketch it first. We let y = z = 0 to get the bounds

for x, and let z = 0 to get the bounds for y,

E = {(x, y, z)|0 ≤ x ≤ 1, 0 ≤ y ≤ 1− x, 0 ≤ z ≤ 1− x− y}.
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Ex: Evaluate
∫∫∫
E

√
x2 + z2dV , where E is the region bounded by the paraboloid y = x2 + z2 and y = 4.

Solution: Notice that the y limits are already given and the Kernel of the integral doesn’t have
y in it, so lets do that integral first.∫∫∫
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What are some ideas to make that integral easier?
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