MATH 2450 RAHMAN Week 11

12.5 Triple integrals (continued)

Ex: Use a triple integral to find the volume of the tetrahedron T bounded by the planes $x + 2y + z = 2$, $x = 2y, x = 0, \text{ and } z = 0.$

Solution: This one was quite a bit involved. But basically we would want to use x as the independent variable, and find out where two sides of the tetrahedron intersect. On the xy -plane we have $x = 2y$ and $x = 2 - 2y$ since $z = 0$, then they intersect at $x = 1$. So, x goes from 0 to 1, and we take horizontal slices for y on the xy -plane. Then our domain becomes

$$
T = \{(x, y, z) | 0 \le x \le 1, \frac{x}{2} \le y \le 1 - \frac{x}{2}, 0 \le z \le 2 - x - 2y\}
$$

Since we are finding a volume our Kernel of integration will be 1. Then

$$
V = \iiint_{T} dV = \int_{0}^{1} \int_{x/2}^{1-x/2} \int_{0}^{2-x-2y} dz dy dx = \int_{0}^{1} \int_{x/2}^{1-x/2} (2-x-2y) dy dx
$$

=
$$
\int_{0}^{1} [2y - xy - y^{2}]_{x/2}^{1-x/2} dx = \int_{0}^{1} \left[2 - x - x \left(1 - \frac{x}{2} \right) - \left(1 - \frac{x}{2} \right)^{2} - x \frac{x^{2}}{2} + \frac{x^{2}}{4} \right] dx
$$

=
$$
\int_{0}^{1} (x^{2} - 2x + 1) dx = \frac{x^{3}}{3} - x^{2} + x \Big|_{0}^{1} = \boxed{\frac{1}{3}}
$$

12.7 Cylindrical and spherical coordinates

Cylindrical coordinates. Cylindrical coordinates are just like polar, except with a z component. For this class we will use the following format to do all cylindrical integrals:

$$
\iiint\limits_{E} f(x, y, z)dV = \int_{\alpha}^{\beta} \int_{h_1(\theta)}^{h_2(\theta)} \int_{u_1(r\cos\theta), r\sin\theta}^{u_2(r\cos\theta, r\sin\theta)} r dz dr d\theta.
$$
 (1)

Ex: Evaluate

$$
\int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{\sqrt{x^2+y^2}}^{2} (x^2 + y^2) dz dy dx.
$$

Solution: We need to convert our original limits to cylindrical. Notice that the x limits $-2 \le x \le 2$ and the y limits $-\sqrt{4-x^2} \le y \le \sqrt{4-x^2}$ give us the circle $x^2 + y^2 = 4$. Then

$$
E = \{(x, y, z) | -2 \le x \le 2, -\sqrt{4 - x^2} \le y \le \sqrt{4 - x^2}, \sqrt{x^2 + y^2} \le z \le 2
$$

= $\{(r, \theta, z) | 0 \le \theta \le 2\pi, 0 \le r \le 2, r \le z \le 2\}.$

And our integral becomes

$$
\iiint_E (x^2 + y^2) dV = \int_0^{2\pi} \int_0^2 \int_r^2 (r^2) r dz dr d\theta = \int_0^{2\pi} \int_0^2 r^3 [z]_r^2 dr d\theta = \int_0^{2\pi} \int_0^2 r^3 [2 - r] dr d\theta
$$

$$
= 2\pi \int_0^2 (2r^3 - r^4) dr = 2\pi \left[\frac{1}{2}r^4 - \frac{1}{5}r^5 \right]_0^2 = 2\pi \left[8 - \frac{32}{5} \right] = \boxed{\frac{16}{5}\pi}.
$$

Spherical coordinates. Spherical on the other hand is completely different.

Our spherical integrals will always be in the following format:

$$
\int_{c}^{d} \int_{\alpha}^{\beta} \int_{a}^{b} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^{2} \sin \phi d\rho d\theta d\phi.
$$
 (2)

Ex: Evaluate

$$
\iiint\limits_B e^{(x^2+y^2+z^2)^{3/2}}dV,
$$

where

$$
B = \{(x, y, z)|x^2 + y^2 + z^2 \le 1\}.
$$

Solution: Lets convert B ,

$$
B = \{ (\rho, \theta, \phi) | 0 \le \rho \le 1, \ 0 \le \theta \le 2\pi, \ 0 \le \phi \le \pi \}.
$$

Then

$$
\iiint\limits_{B} e^{(x^2+y^2+z^2)^{3/2}} dV = \int_0^{\pi} \int_0^{2\pi} \int_0^1 e^{(\rho^2)^{3/2}} \rho^2 \sin \phi d\rho d\theta d\phi = 2\pi \int_0^{\pi} \sin \phi d\phi \int_0^1 e^{\rho^3} \rho^2 d\rho
$$

$$
= 2\pi [-\cos \phi]_0^{\pi} \left[\frac{1}{3} e^{\rho^3} \right]_0^1 = \left[\frac{4}{3} \pi (e-1) \right].
$$

Ex: Use spherical coordinates to find the volume of the solid above the cone $z = \sqrt{x^2 + y^2}$ and below the sphere $x^2 + y^2 + z^2 = z$.

Solution: Notice that the intersection does not restrict θ , so $0 \leq$ $\theta \leq 2\pi$. Further, the radius will go from the origin to the boundary of the sphere:

$$
\rho^2 = \rho \cos \phi \Rightarrow 0 \le \rho \le \cos \phi.
$$

Finally, we have ϕ . This will go from the z-axis to the cone, so we need to know the angle of the side of the cone:

$$
z = \sqrt{x^2 + y^2} \Rightarrow \rho \cos \phi = \sqrt{\rho^2 \sin^2 \phi \cos^2 \theta + \rho^2 \sin^2 \phi \sin^2 \theta} = \rho \sin \phi \Rightarrow \sin \phi = \cos \phi \Rightarrow \phi = \frac{\pi}{4},
$$

then $0 \leq \phi \leq \pi/4$. Our integral becomes

If $x = g(u, v)$ and $y = h(u, v)$ then

$$
V = \int_0^{\pi/4} \int_0^{2\pi} \int_0^{\cos \phi} \rho^2 \sin \phi d\rho d\phi d\theta = 2\pi \int_0^{\pi/4} \sin \phi \left[\frac{1}{3} \rho^3\right]_0^{\cos \phi} d\phi
$$

= $\frac{2\pi}{3} \int_0^{\pi/4} \sin \phi \cos^3 \phi d\phi = \frac{2\pi}{3} \left[-\frac{1}{4} \cos^4 \phi\right]_0^{\pi/4} = \boxed{\frac{\pi}{8}}.$

12.8 The Jacobian

There is actually an algorithmic way to change the variables, and that is through the Jacobian.

 $J(x, y) =$ ∂x ∂u ∂x ∂u ∂v
∂y ∂y ∂u $\eth y$ ∂v (3)

And $dxdy = dA = J(x, y)dudv$. Similarly, if $x = g(u, v, w)$, $y = h(u, v, w)$, and $z = k(u, v, w)$, then

$$
J(x, y, z) = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix}.
$$
 (4)

