
Math 2450 Rahman Week 11

12.5 Triple integrals (continued)

Ex: Use a triple integral to find the volume of the tetrahedron T bounded by the planes x + 2y + z = 2,
x = 2y, x = 0, and z = 0.

Solution: This one was quite a bit involved. But basically we would want to use x as the
independent variable, and find out where two sides of the tetrahedron intersect. On the xy-plane we
have x = 2y and x = 2− 2y since z = 0, then they intersect at x = 1. So, x goes from 0 to 1, and we
take horizontal slices for y on the xy-plane. Then our domain becomes

T = {(x, y, z)|0 ≤ x ≤ 1,
x

2
≤ y ≤ 1− x

2
, 0 ≤ z ≤ 2− x− 2y}

Since we are finding a volume our Kernel of integration will be 1. Then

V =

∫∫∫
T

dV =

∫ 1

0

∫ 1−x/2

x/2

∫ 2−x−2y

0

dzdydx =

∫ 1

0

∫ 1−x/2

x/2

(2− x− 2y)dydx

=

∫ 1

0

[2y − xy − y2]1−x/2x/2 dx =

∫ 1

0

[
2− x− x

(
1− x

2

)
−
(

1− x

2

)2
− xx

2

2
+
x2

4

]
dx

=

∫ 1

0

(
x2 − 2x+ 1

)
dx =

x3

3
− x2 + x

∣∣∣∣1
0

=
1

3
.

12.7 Cylindrical and spherical coordinates

Cylindrical coordinates. Cylindrical coordinates are just like polar, except with a z component. For this
class we will use the following format to do all cylindrical integrals:∫∫∫

E

f(x, y, z)dV =

∫ β

α

∫ h2(θ)

h1(θ)

∫ u2(r cos θ,r sin θ)

u1(r cos θ),r sin θ

rdzdrdθ. (1)

Ex: Evaluate ∫ 2

−2

∫ √4−x2
−
√
4−x2

∫ 2

√
x2+y2

(x2 + y2)dzdydx.

Solution: We need to convert our original limits to cylindrical. Notice that the x limits−2 ≤ x ≤ 2
and the y limits −

√
4− x2 ≤ y ≤

√
4− x2 give us the circle x2 + y2 = 4. Then

E = {(x, y, z)| − 2 ≤ x ≤ 2, −
√

4− x2 ≤ y ≤
√

4− x2,
√
x2 + y2 ≤ z ≤ 2

= {(r, θ, z)|0 ≤ θ ≤ 2π, 0 ≤ r ≤ 2, r ≤ z ≤ 2}.
And our integral becomes∫∫∫

E

(x2 + y2)dV =

∫ 2π

0

∫ 2

0

∫ 2

r

(r2)rdzdrdθ =

∫ 2π

0

∫ 2

0

r3[z]2rdrdθ =

∫ 2π

0

∫ 2

0

r3[2− r]drdθ

= 2π

∫ 2

0

(2r3 − r4)dr = 2π

[
1

2
r4 − 1

5
r5
]2
0

= 2π

[
8− 32

5

]
=

16

5
π .
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Spherical coordinates. Spherical on the other hand is completely different.

x

y

z

•
P (ρ, θ, φ)

ρ

ρ sinφ

z = ρ cosφ

y = (ρ sinφ) sin θ

x = (ρ sinφ) cos θ

φ

φ

θ

Our spherical integrals will always be in the following format:

∫ d

c

∫ β

α

∫ b

a

f(ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ)ρ2 sinφdρdθdφ. (2)

Ex: Evaluate ∫∫∫
B

e(x
2+y2+z2)3/2dV,

where

B = {(x, y, z)|x2 + y2 + z2 ≤ 1}.

Solution: Lets convert B,

B = {(ρ, θ, φ)|0 ≤ ρ ≤ 1, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π}.

Then ∫∫∫
B

e(x
2+y2+z2)3/2dV =

∫ π

0

∫ 2π

0

∫ 1

0

e(ρ
2)3/2ρ2 sinφdρdθdφ = 2π

∫ π

0

sinφdφ

∫ 1

0

eρ
3

ρ2dρ

= 2π[− cosφ]π0

[
1

3
eρ

3

]1
0

=
4

3
π(e− 1) .



Ex: Use spherical coordinates to find the volume of the solid above the
cone z =

√
x2 + y2 and below the sphere x2 + y2 + z2 = z.

Solution: Notice that the intersection does not restrict θ, so 0 ≤
θ ≤ 2π. Further, the radius will go from the origin to the boundary of the
sphere:

ρ�2 = �ρ cosφ⇒ 0 ≤ ρ ≤ cosφ.

Finally, we have φ. This will go from the z-axis to the cone, so we need to
know the angle of the side of the cone:

z =
√
x2 + y2 ⇒ ρ cosφ =

√
ρ2 sin2 φ cos2 θ + ρ2 sin2 φ sin2 θ = ρ sinφ⇒ sinφ = cosφ⇒ φ =

π

4
,

then 0 ≤ φ ≤ π/4. Our integral becomes

V =

∫ π/4

0

∫ 2π

0

∫ cosφ

0

ρ2 sinφdρdφdθ = 2π

∫ π/4

0

sinφ

[
1

3
ρ3
]cosφ
0

dφ

=
2π

3

∫ π/4

0

sinφ cos3 φdφ =
2π

3

[
−1

4
cos4 φ

]π/4
0

=
π

8
.

12.8 The Jacobian

There is actually an algorithmic way to change the variables, and that is through the Jacobian.

If x = g(u, v) and y = h(u, v) then

J(x, y) =

∣∣∣∣∂x∂u ∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣ (3)

And dxdy = dA = J(x, y)dudv. Similarly, if x = g(u, v, w), y = h(u, v, w), and z = k(u, v, w), then

J(x, y, z) =

∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w

∣∣∣∣∣∣ . (4)


