MATH 2450 RAHMAN Week 11

12.5 TRIPLE INTEGRALS (CONTINUED)

Ex: Use a triple integral to find the volume of the tetrahedron 7" bounded by the planes x + 2y + 2z = 2,
r=2y,x=0,and z =0.

Solution:  This one was quite a bit involved. But basically we would want to use z as the
independent variable, and find out where two sides of the tetrahedron intersect. On the xy-plane we
have z = 2y and x = 2 — 2y since z = 0, then they intersect at x = 1. So, x goes from 0 to 1, and we
take horizontal slices for y on the xy-plane. Then our domain becomes

Since we are finding a volume our Kernel of integration will be 1. Then
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12.7 CYLINDRICAL AND SPHERICAL COORDINATES

For this
class we will use the following format to do all cylindrical integrals:
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Ex: Evaluate
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Solution: We need to convert our original limits to cylindrical. Notice that the x limits —2 < z <2
and the y limits —v/4 — 22 <y < v/4 — 22 give us the circle 22 + y?> = 4. Then
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And our integral becomes
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Spherical coordinates. Spherical on the other hand is completely different.

%y
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Our spherical integrals will always be in the following format:
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Ex: Evaluate
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where

B ={(z,y,2)|z* +y* + 2* < 1}.

Solution: Lets convert B,
B={(p0,0)0<p<1,0<0<2m, 0< ¢ <}

Then
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Ex: Use spherical coordinates to find the volume of the solid above the 1 -

cone z = /22 + 42 and below the sphere 22 + 2 + 22 = z. 08

Solution: Notice that the intersection does not restrict 6, so 0 < 0.6 -
0 < 2m. Further, the radius will go from the origin to the boundary of the 041 :
sphere ' \

pzzpcos¢:>0§p§cos¢. 021 N
Finally, we have ¢. This will go from the z-axis to the cone, so we need to 0 W
know the angle of the side of the cone: 0.5 0 0505 0 0.5

z=/22+y?> = pcos¢ = \/p251n2¢cos29+pQSin2¢sin29 = psing = sin¢g = cosp = ¢ = %,
then 0 < ¢ < 7/4. Our integral becomes
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12.8 THE JACOBIAN

There is actually an algorithmic way to change the variables, and that is through the Jacobian.

If x = g(u,v) and y = h(u,v) then
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