
Math 2450 Rahman Week 12

13.1 Vector fields

Let E be a subset of R3. A vector field on R3 is a vector function ~F that assigns a vector ~F (x, y, z) at
each point (x, y, z). Note: this can be done in any number of dimensions, but we will stick to 2 and 3-D. Also

we can write ~F as
~F (x, y, z) = P (x, y, z)̂ı +Q(x, y, z)̂ +R(x, y, z)k̂. (1)
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Ex: A vector field on R2 is defined by F (x, y) = −ŷı + x̂. This
creates the vectors in the figure on the right at each point in
R2. Some representative points are taken in the figure on the
right. Notice that from the representative points we can deduce
that a particle under the influence of that vector field will go
in a circle with the radius determined by the initial condition.
Other examples of vector fields are fluid flows, gravity electric-
ity, magnetism, etc. The gradient is also a type of vector field
because ∇f = fx̂ı + fy ̂.
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Ex: If F (x, y, z) = xẑı + xyz̂− y2k̂, find curl(F ).
Solution:
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∣∣∣∣∣∣ = −y(2 + x)̂ı + x̂ + yzk̂ .

Theorem 1. If f is a function of three variables that has continuous second order partial derivatives,
then

curl(∇f) = 0. (3)

Proof.

∇× (∇f) = (fyz − fzy )̂ı + (fzx − fxz )̂ + (fxy − fyx)k̂ = 0.
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Here ∇f is called a conservative vector field

Divergence

div(F ) = ∇ · F =
∂P

∂x
+
∂Q
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+
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∂z
. (4)

Ex: If F (x, y, z) = xẑı + xyz̂− y2k̂, find div(F )
Solution:

div(F ) = ∇ · F =
∂
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(xz) +
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(xyz) +
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(−y2) = z + xz .
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Theorem 2. If F = P ı̂ + Q̂ + Rk̂ is a vector field on R3 and P , Q, and R have continuous second partial
derivatives then

div(curl(F )) = 0. (5)

Proof.

∇ · (∇× F ) =
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The Laplacian

If the gradient is a generic first order derivative in multivariate systems, the Laplacian is the generic
second order derivative.

∇2f = ∇ · (∇f) = fxx + fyy + fzz. (6)

A function that satisfies Laplace’s equation (∇2f = 0) is said to be Harmonic.

13.2 Line integrals

Suppose we have a curve, C, defined parametrically as x = x(t), y = y(t); a ≤ t ≤ b, and we want to
integrate a function over this line. Then we must do a change of variables with the parameterization

Definition 1. If f is defined on a smooth curve, C, then the line integral of f along C is
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While this is written in 2-D it can easily be extended to 3-D.

Ex: Evaluate
∫
C

(2 + x2y)ds where C is x2 + y2 = 1; y ≥ 0.
Solution: What is the obvious parameterization? x = cos t, y = sin t.
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Ex: Evaluate
∫
C

2xds where C consists of the arc, C1, of the parabola y = x2 from (0, 0) to (1, 1) followed
by the vertical line segment, C2, from (1, 1) to (1, 2).
C1: Since this is a function of x, we can parameterize as x = x, y = x2; 0 ≤ x ≤ 1, then∫
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C2: Notice that his is purely a function of y as x doesn’t change, so let x = 1, y = y; 1 ≤ y ≤ 2, then∫
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C1 + C2: Thus, ∫
C
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