MATH 2450 RAHMAN Week 13

13.2 LINE INTEGRALS (CONTINUED)

Line integrals with respect to x and y

If we want to integrate over a curve, but only take the x or y contributions, our change of variables
becomes much easier, and hence the formulas are more compact.

/f(x,y)dx:/ f(x(t),y(t)x'(t)dt,
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Ex: Evaluate [, y?dx+ xdy, where a) C' = C} is the line segment from (-5, —3) to (0,2) and b) C = C,
is the arc of the parabola x = 4 — y? from (-5, —3) to (0, 2).
(a) In class we used a slightly more obvious parameterization, but here I am going to use something
that looks different, but is in fact equivalent.
Parameterization: © =5t — 5, y =5t —3; 0 <t < 1. Then

1 1
/ y2dr + zdy = / (5t — 3)*(5dt) + (5t — 5)(5dt) = 5/ (25t% — 25t + 4)dt
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(b) Parameterization: z =4 —y* y=y; -3 <y < 2.
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/ yrde + xdy = / y*(—2y)dy + 4(4 — y*)dy = / (—2¢° — y* + 4)dy
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Ex: Evaluate fo ysin zds where C' is the circular helix x = cost, y = sint, z =t; 0 <t < 27.
Solution:

27 1 21
1
/ysinzds:/ (Sint)sint\/M+ 1dt:\/§/ 5(1—cos21ﬁ)dzt
C 0 0

2 1 o
= £ [t— —sinZt} = |V2r|.
2 2 .
Ex: Evaluate [,ydz + zdy + xdz where C' consists of line segments C; from (2,0,0) to (3,4,5) and C;
from (3,4,5) to (3,4,0).
Solution:

C1: We can write the parameterization in the form of a vector in 3-D: 7(t) = (2 + ¢, 4¢, 5t). Then
L 29 ' 149
ydr + zdy + xdz = [ (4t)dt + (5t)(4dt) + (2 + t)(5dt) = 10t + ?t =5}
ol 0 0

Cy: Once again our vector is 7(t) = (3,4,5 — 5t). Notice that dz = dy = 0, so

1
/ ydx + zdy + xdz = / 3(=b)dt = —15.
Co 0

Ch + Cy: fC ydr + zdy + vdz = 24.5 — 15 = 9.5.




Line integrals of vector fields

If we want the integral along C' of F we need to pick out the component of F tangential to the curve;
i.e., F'- T, and notice that ds/dt = ||7'(t)||, and T = 7"(t)/||7'(t)||, so

/cF = ./a.)ﬁ(F(t)) ' ?:E3| 177(#)l|dt = /a‘)ﬁ(F(f)) -7 (t)dt. (2)

Ex: Find the work done by the force field F/(z,y) = 21— zyj in moving a particle along the quarter-circle.
Solution Parameterization 7(t) = costi+sint]; 0 <t < 7/2.
So, F(r(t)) = cos® t1 — costsintj and r/(t) = — sinti + costj. Therefore,

w/2

2
0 3/

/2 /2 )
W= / F.dr = / F(r(t)) - r'(t)dt = / (—2cos®t + sint)dt = 3 cos’ t
0

Ex: Evaluate [, F-dr where F(z,y,2) = zyi+yzj+ zzk and C is the twisted cubic z = t, y = 2, z = t3;

0<t<1.
Solution: 7(t) = (t,12,t3) = r'(t) = (1,2t,3t?) and F = (t3,1°,¢*). Then
' / ! 3 6 1 4 5 7 ' 27
Fodr= [ F(r@) -r@)dt= [ (*+5°)dt=-t"+=t"| = |
c 0 0 4 7 0 28

13.3 FUNDAMENTAL THEOREM OF LINE INTEGRALS

Theorem 1. Let C be a smooth curve given by the vector function 7(t); a <t <b. Let f be a differentiable
function of two or three variables whose gradient vector V f is continuous on C'. Then

[ 9= 100) = sr(@). 3)

Proof.
’ / _ ’ dx dy dz
/CVf~dr:/a Vf-r(t)dt—/a (wavayE—l—sz) dt
b
flr(t)dt = f(r(b)) — f(r(a))
by the fundamental theorem of calculus. OJ

Ex: Find the work done by the gravitational field F(z) = —mMG7/||7]|® in a moving particle with mass
m from point (3,4, 12) to point (2,2,0) along a smooth curve.
Solution: This is a conservative vector field since V x F' = 0, and therefore there is an f such

that F' =V f. This f turns out to be f(z,y,z) = mMG/||7]|. Then

mMG mMG 1 1
W= [ Fdr= [ Vfdr=F220)—f(34,12 —mMG [ — — = )|
/C : / edr = £(2.2,0)-(3,4,12) = =Ll e = (m 13)




Properties of path independence

') o I’ - dr is path independent if and only if /. o F'-dr =0 for all closed C C D.
o If f o F' - dr is path independent, then F'is conservative.
e [' = P14 ()] is conservative if and only if P, = Q.

Ex: Determine whether F'(z,y) = (z — y)i+ (z — 2)j is conservative. Solution: P, =—1and @), =1, so
F' is not conservative since P, # Q.
Ex: Determine if F(z,y) = (3 4 2zy)l + (2* — 3y?)j is conservative. Solution: P, =2z = Q,, so F' is
conservative.
Ex:  (a) If F(z,y) = (3 + 2zy)i + (2* — 3y?)], find f such that F = Vf.
Solution: Since Vf = (f., f,), (fo, fy) = 3+ 22y,2* — 3y?). So, fr = 3+ 22y = f(z,y) =
3z +2%y+g(y) because we need a constant of integration, but since f is a function of two variables
and f, will differentiate out any function of only y we need our “constant” to be some generic
function of y. Now we have an explicit form of f, from Vf = F, and we can differentiate the f
we found. If we equate them we will find what g(y) is. f, = 22 + ¢'(y) = 2® — 3y?, so clearly
Jd(y) = =3y* = g(y) = —y> + K. Plugging this back gives us f(z,y) = 3z + 2%y — y> + K.
(b) Evaluate the line integral [, F' - dr where C' is the curve given by 7(t) = e'sinti + e’ costj;
0<t<m.
Solution: 7(0) = (0,1) and 7(7) = (0, —e™), then

/F-d?”:/Vf~d7“:f(0,—€7r)—f(0,l):€3W—(—1>63W+1.
c c

Ex: If F(z,y,2) = y*i + (2zy + €¥)j + 3ye*k find f such that Vf = F.
Solution: f, =y* = f =2y®+ g(y, 2), then f, = 2zy + g, = 2zy + €**. Clearly, g, = ¢** = g =
ye3* 4+ h(z). Again we plug back in and differentiate with z this time f = zy? + ye3* + h(z) = f. =
3ye3® + 1/ (z) = 3ye3*. Clearly, h'(2) = 0 = h(z) = K, and finally f = zy* + ye** + K.

13.4 GREEN’S THEOREM

Theorem 2. Let C' be a positively oriented, piecewise-smooth, simple closed curve in the plane and let D be
the region bounded by C. If P and () have continuous partial derivatives on an open region that contains D,

then
' [ [0Q OP
Pdx + Qdy = — — — | dA. 4
/0 do + Qdy // <0:12 0!/) ‘ @)
D

(1) Evaluate [, x"dx+ xydy where C'is the triangular curve consisting of the line segments from (0,0) to
(1,0), from (1,0) to (0, 1), and from (0, 1) to (0,0).
Solution:

5’@ 8P 1 1—x 1 1 1—x
x4d:r+$d://(———)dA:// —Oddx:/ [_2} dr
/C vy ox 3y 0o Jo (y )y 0 2y 0
D
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(2) Evaluate [, (3y — e"*) da + <7x + 4yt + 1) dy where C is the circle 22 + y? = 9.
/ (3y — ™) dx + <7m + V't + 1) dy = // XD L% (3y — ™) — (7x + V't + )]
c

2w 3
= / / (7 — 3)rdrdd = 27 - 27"2
0 0 0

=1|367|.

13.5 FLUX INTEGRALS

These are also called surface integrals, and they extend the concept of a line integral. Consider the
surface, S, defined by z = g(z,y), and this surface will project onto the zy-plane as a rectangular domain D.

Then
// f(flay,Z)dS/ f(@,y,9(x,9))y /97 + g5 + 1dA (5)
s D

Ex: Evaluate ffdewhereSisz:x+y2;0§x§1,0§y§2.

S
Solution:

//de //y\/mdfl //ymdydx—(/oldx>(\/§/:y\/mdy>

—\/_() (14 2y )3/2 L

= 21
Ex: Compute the surface integral [[ zdS, where S is z* +y* + 2* = 1.

0 3

s
Solution: Lets differentiate implicitly first, and that should make things a lot easier,
0z x 0z Yy

0
x2+y2+22:1]:>2:1:+2z—Z:O:>—:—— — ==

o | Ox Ox 2" Oy z

Then

// 22dS = // ,/1+—+ dA //—dA_Q/ /Tcoserdrde
_2(/0 ;[1+00529]d9> (/1 Qll}udu)zz(zw){ /2—%u3/2](1):4;—.

Surface integral of a vector field

Just like with line integrals, for surface integrals we integrate along gradients: [[ F'-dS = [[ F -V fdA
S D
where f(x,y,z) = z — g(x,y). Notice that

0 0
F'Vf:<PaQ>R>'<focv.fyafz>:<PaQ7R>'<_gxa_gy71>:_ng_ng_l'R:_P%_Qa_i

l//F.dS—//F-V.fdA—//( Pfji-()()y+5)> A o
s 5 5

therefore



Ex: Evaluate [[F -dS where F(z,y,2) = yi+ 2j + zk and S is the boundary of the solid between
s

z=1—-2>—y?and 2 =0.
Solution:

//F ds = //( P——Q +R)dA:// —y(—2z) — z(—2y) + 1 — 2° — y*] dA
// 1+4ay — 2 —y?) dA = /ZW/ 1+ 4r® cos O sin — r*) rdrdd

1 1
/ / r—1r® 4 4 cos@sm@)drd@—/ (4+C08981n9) d9—4(27r)~|—0: g
0

13.6 STOKE’S THEOREM

This is an extension to Green’s theorem. Basically Green’s theorem picks out the z-component of Stoke’s.

Theorem 3. Let S be an oriented piecewise-smooth surface that is bounded by a simple, closed piecewise-
smooth boundary curve C with positive orientation. Let F' be a vector field whose components have continuous
partial derivatives on an open region in R® containing S. Then

/(F Cdr = /;/(v x F)-dS = //(v x F) - (Vf)dA. (7)

Ex: Evaluate fC F - dr where F(z,y,2) = —y*1+ 2] + 22k and C' is the curve of intersection of the plane
y + z = 2 and the cylinder 2% + y? = 1.
Solution:
First lets calculate the curl of F, V x F = (1 + 2y)k = (0,0,1 4 2y). Then

/F-dr—//(VxF -dS = //1+2ydA / / (14 2rsin@)rdrdd
c

1 2 12 1
:/o {§r2+§r3sin¢9hd9:/o (§+§Sin0) d0:§(27r)—|—02.
Ex: Use Stoke’s theorem to compute [[(V x F)-dS where F(z,y,z) = 21+ yzj + :EyR and S is part of
S

the sphere 2 + y? 4 22 = 4 that lies inside the cylinder 22 + 3? = 1 above z = 0.
Solution:  The cylinder and sphere intersect at z = /3 in a circle, so we integrate over C
represented by
7(t) = (cost,sint,/3) = 7'(t) = (—sint, cost, 0)
Then

//(V x F)-dS = /CF-dr: /:W F(r(t)) - (t)dt = /O%(ﬁcost,\/§sint,costsint> - (—sint, cost,0)

S

2m
:/ (—V/3costsint + v/3sintcost)dt =0,
0



