
Math 2450 Rahman Week 3

Section 9.7 Quadratic surfaces (continued)

Ex: Sketch z = 4x2 + y2

Solution: What problem do we run into in the xy-plane?

Notice that if z = 0, then x = y = 0, and z ≥ 0, so lets take some k ≥ 0.
Now if we look at z = k we get the equation 4x2 + y2 = k, which is an ellipse.

Then in the xz-plane we get y = 4x2, and similarly in the yz-plane we get
z = y2; both of which are parabolas. So, this is an elliptic paraboloid.

Ex: Sketch z = y2 − x2.

Solution: Notice that unlike the previous problem, z can be negative
and z = 0 isn’t an issue. So we have three cases, z = 0 ⇒ y = ±x, z = 1 ⇒
y2 − x2 = 1, z = −1⇒ y2− x2 = −1⇒ x2 − y2 = 1, which gives us hyperbolas.
For this problem it is useful to sketch the trace (plot on the left). Then for

the other two directions we have z = −x2 in the xz-plane and z = y2 in the
yz-plane, which are paraboloas. So we have a hyperbolic paraboloid also known
as a saddle.
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Ex: Sketch x2/4 + y2 − z2/4 = 1.

Solution: The xy-plane gives us x2/4+y2 = 1, xz-plane: x2/4−z2/4 = 1, and yz-plane: y2−z2/4 = 1.
So we have an ellipse in the xy-plane and hyperbolas in the other, so this is a Hyperboloid. Notice in the
plot, that the hyperboloid is connected, and therefore of one sheet (plot on the left).

Ex: Sketch 4x2 − y2 + 2z2 + 4 = 0.

Solution: In standard form this is −x2 + y2/4− z2 = 1. Then for the xy-plane we get −x2 + y2/4 = 1.
This is a hyperbola, but notice that |y| ≥ 2, otherwise x would be imaginary. In the xz-plane we get
x2 +z2/2 = 1−k2/4 if we let y2 = k2 ≥ 4, which is an ellipse. Finally, on the yz-plane we get y2/4−z2/2 = 1,
which is a hyperbola. So we get a hyperboloid once again, however since it is not connected this will be of
two sheets (plot on the right).

Ex: Classify the quadratic surface x2 + 2z2 − 6x− y + 10 = 0.

Solution: Notice that this is not in standard form. Everything is fine except the x portion. If we
complete the square we get

(x− 3)2 + 2z2 − y + 1 = 0.

So, this has a critical point of (3, 1, 0). By looking at the traces: z = 0: y = (x− 3)2 (parabola), y = k > 1:
(x− 3)2 + 2z2 = k − 1 (ellipse), and x = 3: y = 2z2 + 1 (parabola), we see that it is an elliptic paraboloid.

Section 10.1 Vector functions

A vector valued function is a vector where each component is a function: ~r(t) = 〈f(t), g(t), h(t)〉 =

f(t)̂ı + g(t)̂ + h(t)k̂.

Ex: If ~r(t) = 〈t3, ln(3− t),
√
t〉, then f(t) = t3, g(t) = ln(3− t), and h(t) =

√
t. Notice that t ∈ (−∞,∞) for

f(t), (−∞, 3) for g(t), and [0,∞) for h(t). So, the domain is [0, 3).



Definition 1. If ~r(t) = 〈f(t), g(t), h(t)〉, then

lim
t→t0

~r(t) =

〈
lim
t→t0

f(t), lim
t→t0

g(t), lim
t→t0

h(t)

〉
(1)

provided the limits of the component functions exist.

Properties of limits

(1) Sum: limt→t0(~r1(t) + ~r2(t)) = limt→t0~r1(t) + limt→t0~r2(t).
(2) Scalar multiple: limt→t0(f(t)~r(t)) = (limt→t0f(t)) (limt→t0~r(t)).
(3) Dot product: limt→t0(~r1(t) · ~r2(t)) = (limt→t0~r1(t)) · (limt→t0~r2(t)).
(4) Cross product: limt→t0(~r1(t)× ~r2(t)) = (limt→t0~r1(t))× (limt→t0~r2(t)).

Ex: Find limt→0 ~r(t) where ~r(t) = (1 + t3)̂ı + te−t̂ + sin t/tk̂.

Solution:

lim
t→0

~r(t) =

〈
lim
t→0

(1 + t3), lim
t→0

te−t, lim
t→0

sin t

t

〉

Just like with limits, we have a definition of continuity.

Definition 2. A vector function ~r is continuous at t0 if limt→t0 ~r(t) = ~r(t0); i.e., it is continuous if its
components are continuous.

Ex: Describe the curve defined by 〈1 + t, 2 + 5t,−1 + 6t〉.

Solution: Notice that this is just a line through (1, 2,−1) with
direction vector 〈1, 5, 6〉.

Ex: Sketch the curve for ~r(t) = cos t̂ı + sin t̂ + tk̂.

Solution: This is a circle in the xy-plane that moves up the z
direction; i.e., a helix.

Ex: Find the vector equation and parametric equation of the line through
P (1, 3,−2) and Q(2,−1, 3).

Solution: The initial point is P (1, 3,−2) and the direction vector is
~v = 〈1,−4, 5〉. Then the vector and parametric equations are

~r(t) = 〈1 + t, 3− 4t,−2 + 5t〉
x = 1 + t, y = 3− 4t, z = −2 + 5t

Ex: Find a vector function that represents the curve of intersection of the cylinder x2 + y2 = 1 and plane
y + z = 2.

Solution: Notice that x = cos t and y = sin t, since the cylinder is just a circle in the xy-plane. Now
we just need a parameterization of z. Since z = 2− y = 2− sin t. Then

~r(t) = cos t̂ı + sin t̂ + (2− sin t)k̂; 0 ≤ t ≤ 2π.



Section 10.2 Differentiation and integration

Theorem 1. If ~r(t) = 〈f(t), g(t), h(t)〉 and f, g, h are differentiable, then

~r′(t) = 〈f ′(t), g′(t), h′(t)〉. (2)

What does a derivative represent? In 2-D it is the slope of the tangent, so in 3-D it is the direction vector
of the tangent line.

Ex: (a) Find the derivative of ~r(t) = (1 + t3)̂ı + te−t̂ + sin(2t)k̂
Solution:

~r′(t) = 3t2ı̂ + (1− t)e−t̂ + 2 cos(2t)k̂.

(b) Find the unit tangent vector at the point where t = 0.

Solution: ~r(0) = ı̂ and ~r′(0) = ̂ + 2k̂, so the unit tangent vector at point (1, 0, 0) is

T (0) =
~r′(0)

‖~r′(0)‖
=

1√
5
ı̂ +

2√
5
̂

Ex: For the curve ~r(t) =
√
t̂ı + (2 − t)̂, find ~r′(t) and sketch the position

vector ~r(1) and the tangent vector ~r′(1).

Solution: ~r′(t) = 〈1/2
√
t,−1〉, so ~r′(1) = 〈1/2,−1〉. For the sketch,

notice that this is a curve on the xy-plane and y = 2− x2 with x ≥ 0.

Ex: Find the parametric equation for the tangent line to the helix x =
2 cos t, y = sin t, and z = t at point (0, 1, π/2).

Solution: We first notice that t = π/2, then ~r′(t) = 〈− sin t, cos t, 1〉,
and ~r′(π/2) = 〈−2, 0, 1〉. So, the tangent line is the line through point
(0, 1, π/2) and parallel to 〈−2, 0, 1〉; i.e., the tangent line has the parametric
form x = −2t, y = 1, and z = π/2 + t.

Ex: Determine whether ~r(t) = 〈1 + t3, t2〉 is smooth (~r′(t) 6= 0 and continuous).

Solution: First we take the derivative ~r′(t) = 〈3t2, 2t〉, which is zero at t = 0, so it is not smooth as it
has a cusp at (1, 0). But it is smooth at all other points, and hence is called piecewise smooth.

Ex: Show that if ‖~r(t)‖ = c where c is a constant, then ~r′(t) is orthogonal to ~r(t) for all t.

Solution: Since ~r(t) · ~r(t) = ‖~r(t)‖2 = c2, the derivative is

d

dt
[~r(t) · ~r(t)] = ~r′(t) · ~r(t) + ~r(t) · ~r′(t) = 2~r′(t) · ~r(t) = 0.

Therefore, ~r′(t) is orthogonal to ~r(t).

Theorem 2. ∫ b

a

~r(t)dt =

(∫ b

a

f(t)dt

)
ı̂ +

(∫ b

a

g(t)dt

)
̂ +

(∫ b

a

h(t)dt

)
k̂ (3)



Ex: If ~r(t) = (2 cos t)̂ı + (sin t)̂ + (2t)k̂, then∫
~r(t)dt = (2 sin t)̂ı + (− cos t)̂ + (t2)k̂ + C,

and ∫ π/2

0

~r(t)dt = 2̂ı + ̂ +
π2

4
k̂.

Recall that all of these concepts are used for particles of motion.

• ~r(t) is the position vector of a moving object,
• ~v = d~r/dt is the velocity,
• ‖~v‖ is the speed,
• ~v/‖~v‖ gives us the direction, and
• ~a = d~v/dt = d2~r/dt2 is the acceleration.

10.4 Curvature

Lets first talk about arc length. What’s the formula for the length of a straight line?√
(x1 − x0)2 + (y1 − y0)2 + (z1 − z0)2 for x0 ≤ x ≤ x1. We can approximate the length of a curve by

using our straight line formula. To get a better approximation we just use more and more points. This gives
us a sum

N∑
n=1

√
∆x2 + ∆y2 + ∆z2

Then taking the limit of this sum gives us the integral
∫ b
a

√
dx2 + dy2 + dz2, however this integral isn’t in the

form that we are used to. We can’t integrate this as is. Lets multiply the integrand by dt/dt to get

L =

∫ b

a

√(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

dt =

∫ b

a

√
f ′(t)2 + g′(t)2 + h′(t)2dt =

∫ b

a

‖~r′(t)‖dt. (4)

Ex: Find the length of the arc ~r(t) = (cos t)̂ı + (sin t)̂ + tk̂ from point (1, 0, 0) to (1, 0, 2π).

‖~r′(t)‖ =
√

(− sin t)2 + (cos t)2 + 1 =
√

2

⇒ L =

∫ 2π

0

‖~r′(t)‖dt =

∫ 2π

0

√
2dt = 2

√
2π.


