MATH 2450 RAHMAN Week 6

11.3 PARTIAL DERIVATIVES (CONTINUED)

Ex: If f(x,y) =4 —2* — 2% find f,(1,1) and f,(1,1) and interpret the slopes.
Solution: Lets first find the slopes; i.e., take the derivative. f, = —2z = f,(1,1) = —2 and

fy=—4y= f,(1,1) = —4.
It is clearly a quadratic surface, but specifically

and elliptic paraboloid. They are the slopes of the zz and zy
traces.

Ex: If f(x,y) =sin(z/(1 + y)), calculate df /Ox and Of/0y.

Solution:
or l+y)or\1+y) l+y/) 1+y

ﬁ—cos( v )3( v )—_cos( i ) v
oy 1+y)oy\l+y) 1+y) (1+y)?

Ex: Find dz/0x and 0z/0y if z is defined implicitly as a function of x and y in the equation x® + > + 2% +
b6ryz = 1.
Solution:

d ¢ 3 3 3 2 , 0% 0z 0z  —3x% —6yz
ax[x +y° + 2° 4 bayz = 1] x” + 28x+ yz + Yo, O 322 4 62y

Similarly,

0z y*+ 2z
oy 2242y’

Ex: Find f,, fy, f. if f(z,y,2) =e®Inz.
Solution: f, =ye™Inz, f, =ze™Inz, f, =e"/z.

We can also have higher order derivatives just like with single variable functions: 0,(f.) = fuxz, 0,(f,) =

f:r,z/: (9;1;(.]‘},) - .f;g/;f: and 0 (fz/) - f;g/;z/'

Ex: Find the second partial derivatives of f(x,y) = 2 + 2%y — 2y%.
Solution: Recall f, = 3z2+2zy® and f, = 32%y*—4y, then f,, = 6x+2y>, f., = 629°, [y = 629,
fyy = 627y — 4.

We notice that the middle partials are equivalent. However, this is because the function is “nice”, but it

won’t work for all functions.

Theorem 1. Clairaut Suppose [ is defined on a disk D that contains point (a,b). If f., and f,, are both
continuous on D, then fy,(a,b) = fy(a,b).



Ex: Calculate fouy. if f(z,y,2) = sin(3z + yz).
Solution:

fo = 3cos(3x+yz) = for = —9sin(3z4+y2) = fruy = —92cos(3x+yz) = fouy, = —9 cos(3x+yz)+yzsin(3z+yz).

Ex: Show that u(x,y) = e*siny is a solution to Laplace’s equation ., + u,, = 0.
Solution: All we have to do is plug into the differential equation. Notice that u,, = e*siny and

Uy, = —e*siny, so it is obvious that this function satisfies the differential equation.

Ex: Verify that u(z,y) = sin(z — ct) satisfies the wave equation uy = 2ty
Solution: We do the same exact thing as before. u; = —c?sin(z — ct) and u,, = —sin(x — ct).
And once again it is clear that this satisfies the differential equation.

11.4 TANGENT PLANES, APPROXIMATIONS, DIFFERENTIABILITY

Consider a surface z = f(x,y), where f has continuous first partial derivatives. Just like in the previous
section, we can find the tangent line in the z-direction and y-direction at point (xg, 3o, 20) by doing f.(xo, yo)
and f,(xo,yo). For the tangent line in the z-direction we just use rise over run to get

zZ— 20

fo(m0,90) = = 2z — 29 = fo(T0,90)(x — 70),

r — X9

and similarly for the y-direction we get z — 20 = f,(20,%0)(y — v0). Now let write down the equation of a
plane,

Alx —20) + Bly —v0) + C(z — 20) = 0= a(x — ) + by — yo) = 2 — 20

where a = —A/C and b = —B/C. Now, if we set y = yo we get z — zp = a(xz — 2), and notice that at the
tangent line in the z-direction the slope is a = f,(xo, yo), and similarly b = f, (o, yo), then an equation of the
tangent plane to the surface z = f(x,y) at point (xg, yo, 20) is

Z— 2y = f;y(-’lfoa yo)(i”’ - il/'o) + f;z/(flfoe ;1/0)(!/ - !/0)- (1)

Ex: Find the tangent plane of the elliptic paraboloid z = 2% + 4? at point (1,1, 3).
Solution: Let f(z,y) = 22? 4+ ¢?, then f, = 4o = f,(1,1) =4, and f, = 2y = f,(1,1) = 2, and
hence

z—3=4(x—1)+2(y—1).

This works just like tangent lines in 1-D. We can approximate our
quadratic surface with a tangent plane, and the approximation gets better as we move closer to the reference
point.



Linear approximations

In our previous example we get our linearization of f at (1,1) by solving for z:
L(z,y) = 4z + 2y — 3. (2)

and we can use this for our linear approximation of f at (1,1):

fz,y) = dx +2y = 3. (3)

For example, f(1.1,0.95) &~ 4-(1.1)4+2-(0.95) —3 = 3.3, which is close to the real value: f(1.1,0.95) = 3.3225.
However, L(2,3) = 11, but f(2,3) = 17, so (2,3) is too far from (1, 1) for the linearization L to be a good
approximation for f.

In general if zg = f(a,b); i.e., a = zy and b = yp, then

z = f(a,b) + fu(a,b)(x —a) + f,(a,b)(y — b) is the tangent plane, (4a)
L(z,y) = f(a,b) + fs(a,b)(x —a) + f,(a,b)(y —b) is the linearization, (4b)
f(z,y) = f(a,b) + fi(a,b)(z —a) + fy(a,b)(y —b) is the linear approximation, (4c)

We may not always have such approximations. Consider

_ e if (z,y) # (0,0),
flo) = {0 if (z,) = (0,0);

Here f,(0,0) = 0 and f,(0,0) =0, but f(z,y) ~ 0 and f(z,y) = 1/2 along the line y = z, so we cannot use
this approximation. This is because f, and f, are not continuous.

Theorem 2. If the partial derivatives f, and f, exist near (a,b) and are continuous at (a,b), then f is
differentiable at (a,b).

Ex: Show that f(z,y) = xze™¥ is differentiable at (1,0) and find its linearization there. Then use it to
approximate f(1.1,—0.1).

Solution: f, = €™ + zye™ and f, = 2% are continuous since they are products of polynomials

and exponentials, so the function is differentiable. Therefore, we can calculate the linearization at

(1,0)
Lz,y) = f(1,0) + fo(1L,0)(z = 1) + f(LO0)(y —0) =1+ (z - 1) +y =2+,
and we can use this to approximate the function near that point; i.e., ze™ = x + y at (1,0), so

f(11,-01)~11—-0.1=1.



Just as with functions of one variable, we have differentials:

1z
(T = fu(x,y) = dz = f.(z,y)dz,
dx

in the z-direction and similarly dz = f,(x, y)dy in the y-direction, so

0 0z
dz = fu(z,y)dz + f,(z,y)dy = id:p + —dy (5)
’ Ox 0y

Ex: (a) If z = f(z,y) = 2% + 3zy — ¢, find the differential dz.
Solution:

dz = f,dx + f,dy = (2o + 3y)dx + (3z — 2y)dy.

(b) If x changes from 2 to 2.05 and y changes from 3 to 2.96, compare Az with dz.
Solution: dx = 0.05 and dy = —0.04, then

dz=(2-2+3-3)-0.05+(3-2—2-3)-(—0.04) = 0.65.

and

Az = £(2.05,2.96) — f(2,3) = 0.6449.

So, dz is a good approximation of Az, and easier to compute.

Ex: The base radius and height of a right circular cone are measured as 10 cm and 25 c¢m respectively,
with a possible error in measurement of as much as 0.1 0.1cm in each. Use differentials to estimate
the maximum error in the calculated volume.

Solution: The volume of a right circular cone V' = 7r?h/3, then

A% oV 2nrh wr?

then

_27T

dv ?(10)(25)(0.1)4—g(lO)Q(O.l):207r cm?,



11.5 CHAIN RULES

Recall for a single variable function, if f(x) and « = ¢(t), then dy/dt = (dy/dz)(dx/dt), then for a two

variable function z = f(x,y) and z = g(t), y = h(t), this becomes
dz  Ofdr Ofdy

At drdt ' Oydt’

(6)

Ex: If 2 = 2%y + 3xy?, where x = sin 2t and y = cost, find dz/dt at t = 0.
Solution: Let us go step by step with the derivatives 0z/0x = 2zy + 3y*, 9z/0y = 2 + 12133,
dx/dt = 2cos2t, and dy/dt = —sint.
Now we want to evaluate at ¢ = 0, but notice that it is not absolutely necessary to substitute the
functions for x and y since we can simply plug in ¢ = 0, so

d
il - (22y + 3y*)(2cos 2t) + (2% + 122y>)(— sint) = 6.
dt t=0 t=0, z=0, y=1

Let z = f(z,y) and x = g(s,t), y = h(s,t), then
0: _0:00 020y
ds Oxds 0yos
0: _0:00 020y
ot  Odx ot 0Oy ot

Ex: If 2 = e"siny where z = st and y = s%t, find 92/ds and 9z /0t.
Solution:
0 0z 0 0z 0
a—z = 8_;8_:; + 8_;8_3; = (¢"siny)t® + (¢* cosy)(2st) = 2™ sin(s*t) + 2ste™’” cos(s°t)

% = %% + g—;% = (e"siny)(2st) + (e” cosy)s® = 2stet sin(st) + s2est’ cos(s%t).



