
Math 2450 Rahman Week 7

11.5 Chain rules (continued)

Ex: If u = x4y + y2z3 where x = rset, y = rs2e−t, and z = sr2 sin t. Find the value of ∂u/∂s when r = 2,
s = 1, and t = 0.

Solution:

∂u

∂s
= (4x3y)(ret) + (x4)(2rse−t) + (2yz3)(2rse−t) + (3y2z2)(r2 sin t).

When r = 2, s = 1, t = 0, we have x = 2, y = 2, z = 0, then

∂u

∂s

∣∣∣∣
r=2,s=1,t=0

= 192.

Ex: If z = f(x, y) has continuous second order derivatives and x = r2 + s2 and y = 2rs, find
(a) ∂z/∂r

Solution:
∂z

∂r
=
∂z

∂x

∂x

∂r
+
∂z

∂y

∂y

∂r
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∂z

∂x
+ 2s

∂z

∂y
.

(b) ∂2z/∂r2

Solution:

∂2z

∂r2
=

∂

∂r

[
2r
∂z

∂x
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∂z

∂y

]
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∂
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(
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)
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∂
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(
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)
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∂z

∂x
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[
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∂2z

∂x2
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∂2z

∂x∂y

]
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[
(2r)

∂2z

∂y∂x
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∂2z

∂y2

]
= 2

∂z

∂x
+ 4r2

∂2z

∂x2
+ 8rs

∂2z

∂x∂y
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∂2z

∂y2
.

Implicit function theorem. We have seen how implicit differentiation works, but there is a faster formula.
Suppose y = f(x) then y − f(x) = 0. Define F (x, y) = y − f(x) = 0. If F is differentiable and ∂F/∂y 6= 0,
then

∂F

∂x
=
∂F

∂x �
�
���
1

dx

dx
+
∂F

∂y

∂y

∂x
= 0⇒ dy

dx
= −Fx

Fy

.

Ex: Find dy/dx if x3 + y3 = 6xy.
Solution: Let F (x, y) = x3 + y3 − 6xy = 0, then

dy

dx
= −Fx

Fy

= −3x2 − 6y

3y2 − 6x
.

Ex: Find ∂z/∂x and ∂z/∂y if x3 + y3 + z3 + 6xyz = 1.
Solution: Let F (x, y, z) = x3 + y3 + z3 + 6xyz − 1 = 0. Then

∂z

∂x
= −Fx

Fz

= −3x2 + 6yz

3z2 + 6xy

∂z

∂y
= −Fy

Fz

= −3y2 + 6xz

3z2 + 6xy
1



11.6 Directional derivatives and gradients

We can take derivatives in the x and y directions. What is the natural question we want to ask? How
can we look at the tangent line in any direction?

Suppose we want the slope in the ~u = 〈a, b〉 direction where ‖~u‖ = 1. Then if ~u = 〈1, 0〉, the slope is
completely in the x-direction; i.e., fx, otherwise if ~u = 〈0, 1〉, it is completely in the y-direction; i.e., fy. If it’s

something in between, say 〈1/
√

2, 1/
√

2〉, then the slope, using trigonometry, is fx/
√

2 + fy/
√

2. So, we can
write this for any general direction.

Theorem 1. If f is a differentiable function of x and y, then f has a directional derivative in the direction
of any unit vector ~u = 〈a, b〉 and Duf(x, y) = afx(x, y) + bfy(x, y).

Ex: Find the directional derivative Duf(x, y) if f(x, y) = x3 − 3xy + 4y2 and in the direction of θ = π/6
to the x-axis. What is Duf(1, 2)?

Solution: The first thing we want to do is figure out what the unit direction vector is. Since we
are given an angle with respect to the x-axis we use ~u = 〈cos π/6, sin π/6〉 = 〈

√
3/2, 1/2〉. Then

Duf(x, y) = fx(x, y)

√
3

2
+ fy(x, y)

1

2
= (3x2 − 3y)

√
3

2
+ (−3x+ 8y)

1

2
⇒ Duf(1, 2) =

13− 3
√

3

2
.

Now what does afx(x, y)+bfy(x, y) remind us of? We can write this as Duf(x, y) = afx(x, y)+bfy(x, y) =
〈fx(x, y), fy(x, y)〉 · 〈a, b〉.

Definition 1. If f is a function of two variables x and y, then the gradient of f is the vector function defined
by

∇f(x, y) = 〈fx(x, y), fy(x, y)〉 =
∂f

∂x
ı̂ +

∂f

∂y
̂. (1)

Ex: If f(x, y) = sinx+ exy, then

∇f(x, y) = 〈fx, fy〉 = 〈cosx+ yex,y, xex,y〉 ⇒ ∇f(0, 1) = 〈2, 0〉.

Ex: Find the directional derivative of f(x, y) = x2y3 − 4y at (2,−1) in the direction of ~v = 2̂ı + 5̂.
Solution: Notice that v is not a unit vector, so lets take care of that first,

~u =
~v

‖~v‖
=

2√
29

ı̂ +
5√
29

̂.

Next,

∇f(x, y) = 2xy3ı̂ + (3x2y2 − 4)̂⇒ ∇f(2,−1) = −4̂ı + 8̂.

Then Duf(2,−1) = ∇f(2,−1) · ~u = 32/
√

29.

It should be noted that these concepts are easily extended to multiple dimensions. So, in 3-D

∇f(x, y, z) = 〈fx, fy, fz〉 (2)

and

Duf(x, y, z) = ∇f(x, y, z) · ~u. (3)



Ex: If f(x, y) = x sin(yz),
(a) find the gradient of f

Solution:
∇f = 〈sin(yz), xz cos(yz), xy cos(yz)〉.

(b) find the directional derivative of f at (1, 3, 0) in the direction of ~v = ı̂ + 2̂− k̂.
Solution: Again, ~v is not a unit vector.

~u =
~v

‖~v‖
=

1√
6
ı̂ +

2√
6
̂− 1√

6
k̂.

and

∇f(1, 3, 0) = 〈0, 0, 3〉 ⇒ Duf(1, 3, 0) = ∇f(1, 3, 0) · ~u = −3

2
.

Now suppose we want to find the fastest way to go up/down the hill, what direction do we choose?
Another way to ask this is, what is the vector ~u that gives us the maximum dot product ∇f · ~u.

Theorem 2. Suppose f is a differentiable function, the maximum value of the directional derivative Duf is
‖∇f‖ and it occurs when ~u is in the same direction as ∇f .

Ex: (a) If f(x, y) = xey, find the rate of change of f at the point P (2, 0) in the direction from P to
Q(1/2, 2).

Solution: ~PQ = 〈−3/2, 2〉, then the unit direction vector is ~u = 〈−3/5, 4/5〉 and

∇f = 〈ey, xey〉 ⇒ ∇f(2, 0) = 〈1, 2〉 ⇒ Duf(2, 0) = ∇f(2, 0) · ~u = 1.

(b) In what direction does f have the maximum rate of change? What is the value of the maximum
rate of change?
Solution: Direction of maximum rate: ∇f(2, 0) = 〈1, 2〉
Value of maximum rate: ‖∇f(2, 0)‖ = ‖〈1, 2〉‖ =

√
5.

Ex: Suppose the temperature in this room is given by T (x, y, z) = 80/(1 + x2 + 2y2 + 3z2). In which
direction does the temperature increase fastest at (1, 1,−2)? What is this value?

Solution: Fastest:

∇T =
160x̂ı− 320ŷ− 480zk̂

(1 + x2 + 2y2 + 3z2)2

∣∣∣∣
(1,1,−2)

=
5

8
(−̂ı− 2̂ + 6k̂).

Value:

‖∇T‖ =
5

8
‖〈−1,−2, 6〉 =

5
√

41

8
≈ 4◦ C/m

If we go to 4-D just momentarily, we can find some really interesting properties of the gradient. Suppose
a surface is defined by F (x, y, z) = k (i.e., level surfaces), let P (x0, y0, z0) be a point on the surface, and
consider a curve ~r(t) = 〈x(t), y(t), z(t)〉 through P ; i.e., ~r(t0) = 〈x0, y0, z0〉. Since ~r is on the surface,
F (x(t), y(t), z(t)) = k, and if we take the derivative using chain rule we get

∂F

∂x

dx

dt
+
∂F

∂y

dy

dt
+
∂F

∂z

dz

dt
= 0.

Notice that ∇F = 〈Fx, Fy, Fz〉 and ~r ′ = 〈dx/dt, dy/dt, dz/dt〉, then ∇F · ~r ′ = 0. Specifically ∇F (x0, y0, z0) ·
~r ′ = 0 for any curve on the surface; i.e., ∇F (x0, y0, z0) is the normal vector for the tangent plane.

The equation of the tangent plane to a surface can then be written as

Fx(x0, y0, z0)(x− x0) + Fy(x0, y0, z0)(y − y0) + Fz(x0, y0, z0)(z − z0) = 0. (4)



Ex: Find the equations of the tangent plane and normal line at point (−2, 1,−3) to the ellipsoid x2/4 +
y2 + z2/9 = 3.

Solution: Here k = 3, so F (x, y, z) = x2/4 + y2 + z2/9, then Fx = x/2, Fy = 2y, Fz = 2z/9, so

∇F (−2, 1,−3) = 〈−1, 2,−2

3
〉 ⇒ −(x+ 2) + 2(y − 1)− 2

3
(z + 3) = 0,

and the normal line in symmetric form is

x+ 2

−1
=
y − 1

2
=
z + 3

−2/3
.

Notice that we can do this in 2-D too; i.e., the route of steepest ascent is always perpendicular to the
contour lines.

11.7 Extrema

Definition 2. A function of two variables has a local maximum (respectively a local minimum) at (a, b) if
f(x, y) ≤ f(a, b) (respectively f(x, y) ≥ f(a, b)) when (x, y) is near (a, b). The number f(a, b) is called a
local maximum value (respectively local minimum value).

Theorem 3. If f has a local maximum/minimum at (a, b) and fx and fy exist, then

fx(a, b) = fy(a, b) = 0. (5)

A way we can interpret this is to say the tangent plane is parallel to the xy-plane.

Ex: Let f(x, y) = x2 + y2 − 2x − 6y + 14. Notice that this is a paraboloid. Then fx(x, y) = 2x − 2,
fy(x, y) = 2y − 6, and fx = fy = 0 when x = 1, y = 3. In order to use our definition lets put this into
standard form by completing the square:

f(x, y) = 4 + (x− 1)2 + (y − 3)3

Notice that f(1, 3) = 4 and since (x − 1)2 and (y − 3)2 are positive, f(x, y) ≥ 4 for all x and y.
Therefore, (1, 3) is a minimum.

Ex: Find the extreme values of f(x, y) = y2 − x2, or show it does not exist.
Solution: fx = −2x = 0, fy = 2y = 0, then (0, 0) is a critical point. However, on the x-axis for

x > 0, f(x, y) = −x2 < 0, and on the y-axis, if y > 0, f(x, y) = y2 > 0. So, in any neighborhood
around (0, 0) we have both f < 0 and f > 0. Therefore, no extrema exists. And this makes sense
geometrically since the surface is a saddle.

But sometimes we don’t want to do a geometric analysis. Is there an easier way?

Theorem 4 (Second derivative test). Suppose all second partial derivatives of f are continuous on a disk
with center (a, b), and suppose that fx = fy = 0 (i.e., (a, b) is a critical point of f). Let the Hessian be

H(x, y) =

∣∣∣∣fxx fxy
fyx fyy

∣∣∣∣ (6)

then

(1) If H(a, b) > 0 and fxx(a, b) > 0, f(a, b) is a local minimum value.
(2) If H(a, b) > 0 and fxx(a, b) < 0, f(a, b) is a local maximum value.
(3) If H(a, b) < 0, f(a, b) is neither a maximum or a minimum value (e.g. saddle.)


