MATH 2450 RAHMAN Week 7

11.5 CHAIN RULES (CONTINUED)

Ex: If u = 2y + 9?23 where o = rsel, y = rse™

s=1,and t = 0.

, and z = sr?sint. Find the value of du/ds when r = 2,

Solution:
% = (423y)(re') + (2)(2rse™t) + (2y2%)(2rse ™) + (3y222)(r? sint).
Whenr=2,s=1,t=0, we have x =2, y = 2, 2 = 0, then
ou
s r=2,s=1,t=0 -

Ex: If 2 = f(z,y) has continuous second order derivatives and z = r? + s* and y = 2rs, find
(a) 0z/0r
Solution:
0z 0z0xr 0z0y 0z 0z
=t 5 =2 + :
or  Oxodr Oyor ox dy

(b) 822/0r

Solution:
0?2z 0 Dz 0z Dz 9 [0z d [0z
o o {Q% * 25@} =25 T ¥ (a—) 25, (a—y)
0z 0*z 0*z 0%z 9z
= 2% +2r [(27“)@ + (2s) (%Oy} + 2s [(27") g0 + (23)a—y2}
2 2 2
:2%+4r2—82+8rsaz —|—48262

Ox Ox? Oxdy oy?

Implicit function theorem. We have seen how implicit differentiation works, but there is a faster formula.

Suppose y = f(x) then y — f(x) = 0. Define F(z,y) =y — f(z) = 0. If F is differentiable and 0F/dy # 0,
then

1
oF 0Fd OF 0y dy F,
Jdr  Odxdx Oy Ox dx F,
Ex: Find dy/dx if 23 + y* = 62y.
Solution: Let F(x,y) = 23 +4® — 62y = 0, then
dy  F,  3a®>—6y

dx F, T 32— 6a

Ex: Find 0z/0x and 0z/0y if 2® + y® + 23 + 6zyz = 1.
Solution: Let F(x,y,2) = 23+ > + 2% + 6xyz — 1 = 0. Then

0z F, 322 + 6yz

dr  F, 322 +6ay
82__Fy_ 3y% + 62z

dy  F, 322+ 6ay
1



11.6 DIRECTIONAL DERIVATIVES AND GRADIENTS

We can take derivatives in the x and y directions. How
can we look at the tangent line in any direction?

Suppose we want the slope in the @ = (a,b) direction where ||@|| = 1. Then if @ = (1,0), the slope is
completely in the z-direction; i.e., f,, otherwise if @ = (0, 1), it is completely in the y-direction; i.e., f,. If it’s
something in between, say (1/v/2,1/+/2), then the slope, using trigonometry, is f,/v/2 + fy/\/§ So, we can
write this for any general direction.

Theorem 1. If f is a differentiable function of x and vy, then f has a directional derivative in the direction
of any unit vector @ = (a,b) and D, f(z,y) = af.(z,y) + bf,(x,y).

Ex: Find the directional derivative D, f(z,y) if f(z,y) = 2® — 3zy + 4y* and in the direction of § = 7/6
to the z-axis. What is D, f(1,2)7

Solution: The first thing we want to do is figure out what the unit direction vector is. Since we
are given an angle with respect to the r-axis we use @ = (cos 7/6,sin7/6) = (v/3/2,1/2). Then

Duf(z,9) = fx(x,y)\/; + fy(m,y)% = (32" - 3y)? +(—3z+ 8y)% ~ D,f(1,2) = B 5V3 _23\/3_

We can write this as D, f(z,y) = af.(z,y)+bf,(z,y) =
<f-’1:<4771 y)ﬂ fy('r? U)> ’ <(1v b>

Definition 1. If f is a function of two variables = and y, then the gradient of f is the vector function defined
by

Ex: If f(z,y) =sinz + e, then

Vf(2,5) = (fun f) = (o8 + g™, ze™) = V(0,1) = (2,0),

Ex: Find the directional derivative of f(z,y) = 2%y — 4y at (2, —1) in the direction of ¥ = 21 + 5j.
Solution: Notice that v is not a unit vector, so lets take care of that first,
0l 2

5
— = 1+ 1.
o~ vag | vRo

’L_[ =
Next,
Vf(z,y) =201+ (32%y* —4)j = Vf(2, 1) = —41 + §j.
Then D, f(2,—1) = Vf(2,—1) -4 = 32/+/29.



Ex: If f(z,y) = zsin(yz),
(a) find the gradient of f
Solution:

Vf = (sin(yz), xz cos(yz), xy cos(yz)).

(b) find the directional derivative of f at (1,3,0) in the direction of 7 = i + 2j — k.
Solution: Again, U is not a unit vector.
U 1 2 1 -
= — =i+ —j— —k.

ol Ve V6T Ve

and \
Vf(1,3,0)=0,0,3) = D,f(1,3,0) = Vf(1,3,0) - & = —5

Another way to ask this is, what is the vector @ that gives us the maximum dot product Vf - .

Theorem 2. Suppose f is a differentiable function, the maximum value of the directional derivative D, f is
IV fIl and it occurs when @ is in the same direction as V f.

Ex: (a) If f(z,y) = xe¥, find the rate of change of f at the point P(2,0) in the direction from P to
Q(1/22).
Solution: PQ = (—3/2,2), then the unit direction vector is @ = (—3/5,4/5) and

Vf=(eze")y = Vf(2,0) = (1,2) = D, f(2,0) = Vf(2,0) - @ = 1.

(b) In what direction does f have the maximum rate of change? What is the value of the maximum
rate of change?
Solution: Direction of maximum rate: V f(2,0) = (1,2)
Value of maximum rate: ||V£(2,0)| = [|(1,2)]| = V/5.

Ex: Suppose the temperature in this room is given by T'(x,y,2) = 80/(1 + 2* + 2y? + 32%). In which
direction does the temperature increase fastest at (1,1, —2)? What is this value?
Solution: Fastest:

16021 — 320y — 4802k

5 .
— 2(§— 2§+ 6k).
Tt 22 1327 |, , s AT

VT =

Value:

ST
T

5 o
197 = Zl-1,-2,6) £ C/m

Suppose
a surface is defined by F(z,y,z) = k (i.e., level surfaces), let P(xq,yo,20) be a point on the surface, and
consider a curve 7(t) = (z(t),y(t), z(t)) through P; i.e., 7(to) = (xo,v0,20). Since 7 is on the surface,
F(xz(t),y(t),z(t)) = k, and if we take the derivative using chain rule we get

OF d OFdy  OFd: _
or dt Oy dt 0z dt

Notice that VF = (F,, Fy, F,) and 7' = (dz/dt,dy/dt,dz/dt), then VF -7’ = 0. Specifically V F'(zo, yo, 20) -
7' =0 for any curve on the surface; i.e., VF(zo, yo, z0) is the normal vector for the tangent plane.

The equation of the tangent plane to a surface can then be written as

Fy (0, Yo, 20)(x — x0) + Fy(x0, Yo, 20) (¥ — Yo) + F=(20, Yo, 20)(2 — 20) = 0. (4)



Ex: Find the equations of the tangent plane and normal line at point (—2,1, —3) to the ellipsoid 22 /4 +
2,270
y* 4 2°/9 = 3.
Solution: Here k =3, s0 F(x,y,2) = 2?/4+ y* + 22/9, then F, = /2, F, =2y, F, = 2z/9, so

VE(-2,1,-3) = (1,2, —§> w4+ 2) 42y —1)— g(z +3) =0,

and the normal line in symmetric form is
r+2 y—-1 243

-1 2 =2/3

Notice that we can do this in 2-D too; i.e., the route of steepest ascent is always perpendicular to the
contour lines.

11.7 EXTREMA

Definition 2. A function of two variables has a local maximum (respectively a local minimum) at (a,b) if
f(z,y) < f(a,b) (respectively f(z,y) > f(a,b)) when (z,y) is near (a,b). The number f(a,b) is called a
local maximum value (respectively local minimum value).

Theorem 3. If f has a local mazimum/minimum at (a,b) and f, and f, exist, then

fula,b) = £,(a,) = 0. (5)
A way we can interpret this is to say the tangent plane is parallel to the xy-plane.

Ex: Let f(x,y) = 22 + y* — 2z — 6y + 14. Notice that this is a paraboloid. Then f.(x,y) = 2z — 2,
fy(z,y) =2y —6, and f, = f, =0 when z = 1, y = 3. In order to use our definition lets put this into
standard form by completing the square:

flay) =4+ (@ —1)"+(y—3)°
Notice that f(1,3) = 4 and since (x — 1)? and (y — 3)? are positive, f(z,y) > 4 for all x and y.
Therefore, (1,3) is a minimum.

Ex: Find the extreme values of f(z,y) = y* — 2%, or show it does not exist.

Solution: f, = -2z =0, f, = 2y = 0, then (0,0) is a critical point. However, on the z-axis for
x>0, f(x,y) = —2? < 0, and on the y-axis, if y > 0, f(x,y) = y*> > 0. So, in any neighborhood
around (0,0) we have both f < 0 and f > 0. Therefore, no extrema exists. And this makes sense
geometrically since the surface is a saddle.

But sometimes we don’t want to do a geometric analysis. Is there an easier way?

Theorem 4 (Second derivative test). Suppose all second partial derivatives of f are continuous on a disk

with center (a,b), and suppose that f, = f, =0 (i.e., (a,b) is a critical point of f). Let the Hessian be
fTT fT7
H(z,y) = |lee Jav 6
(z,9) Fow S (6)
then

1) If H(a,b) > 0 and f,.(a,b) >0, f(a,b) is a local minimum value.
) If H(a,b) > 0 and f..(a,b) <0, f(a,b) is a local mazimum value.
) If H(a,b) <0, f(a,b) is neither a mazimum or a minimum value (e.g. saddle.)
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