11.5 Chain rules (continued)

Ex: If $u = x^4y + y^2z^3$ where $x = rse^t$, $y = rs^2e^{-t}$, and $z = sr^2\sin t$. Find the value of $\partial u/\partial s$ when $r = 2$, $s = 1$, and $t = 0$.

Solution:

$$
\frac{\partial u}{\partial s} = (4x^3y)(re^t) + (x^4)(2rse^{-t}) + (2yz^3)(2rse^{-t}) + (3y^2z^2)(r^2\sin t).
$$

When $r = 2$, $s = 1$, $t = 0$, we have $x = 2$, $y = 2$, $z = 0$, then

$$
\left. \frac{\partial u}{\partial s} \right|_{r=2, s=1, t=0} = 192.
$$

Ex: If $z = f(x, y)$ has continuous second order derivatives and $x = r^2 + s^2$ and $y = 2rs$, find (a) $\partial z/\partial r$

Solution:

$$
\frac{\partial z}{\partial r} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial r} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial r} = 2r\frac{\partial z}{\partial x} + 2s\frac{\partial z}{\partial y}.
$$

(b) $\partial^2 z/\partial r^2$

Solution:

$$
\frac{\partial^2 z}{\partial r^2} = \frac{\partial}{\partial r} \left[2r \frac{\partial z}{\partial x} + 2s \frac{\partial z}{\partial y} \right] = 2 \frac{\partial z}{\partial x} + 2r \frac{\partial}{\partial r} \left(\frac{\partial z}{\partial x} \right) + 2s \frac{\partial}{\partial r} \left(\frac{\partial z}{\partial y} \right)
$$

\n
$$
= 2 \frac{\partial z}{\partial x} + 2r \left[(2r) \frac{\partial^2 z}{\partial x^2} + (2s) \frac{\partial^2 z}{\partial x \partial y} \right] + 2s \left[(2r) \frac{\partial^2 z}{\partial y \partial x} + (2s) \frac{\partial^2 z}{\partial y^2} \right]
$$

\n
$$
= 2 \frac{\partial z}{\partial x} + 4r^2 \frac{\partial^2 z}{\partial x^2} + 8rs \frac{\partial^2 z}{\partial x \partial y} + 4s^2 \frac{\partial^2 z}{\partial y^2}.
$$

Implicit function theorem. We have seen how implicit differentiation works, but there is a faster formula. Suppose $y = f(x)$ then $y - f(x) = 0$. Define $F(x, y) = y - f(x) = 0$. If F is differentiable and $\partial F/\partial y \neq 0$, then

$$
\frac{\partial F}{\partial x} = \frac{\partial F}{\partial x}\frac{dx}{dx} + \frac{\partial F}{\partial y}\frac{\partial y}{\partial x} = 0 \Rightarrow \frac{dy}{dx} = -\frac{F_x}{F_y}.
$$

Ex: Find dy/dx if $x^3 + y^3 = 6xy$. **Solution:** Let $F(x, y) = x^3 + y^3 - 6xy = 0$, then

$$
\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{3x^2 - 6y}{3y^2 - 6x}.
$$

Ex: Find
$$
\partial z/\partial x
$$
 and $\partial z/\partial y$ if $x^3 + y^3 + z^3 + 6xyz = 1$.
Solution: Let $F(x, y, z) = x^3 + y^3 + z^3 + 6xyz - 1 = 0$. Then

$$
\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{3x^2 + 6yz}{3z^2 + 6xy}
$$

$$
\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{3y^2 + 6xz}{3z^2 + 6xy}
$$

We can take derivatives in the x and y directions. What is the natural question we want to ask? How can we look at the tangent line in any direction?

Suppose we want the slope in the $\vec{u} = \langle a, b \rangle$ direction where $\|\vec{u}\| = 1$. Then if $\vec{u} = \langle 1, 0 \rangle$, the slope is completely in the x-direction; i.e., f_x , otherwise if $\vec{u} = \langle 0, 1 \rangle$, it is completely in the y-direction; i.e., f_y . If it's something in between, say $\langle 1/\sqrt{2}, 1/\sqrt{2} \rangle$, then the slope, using trigonometry, is $f_x/\sqrt{2} + f_y/\sqrt{2}$. So, we can write this for any general direction.

Theorem 1. If f is a differentiable function of x and y, then f has a directional derivative in the direction of any unit vector $\vec{u} = \langle a, b \rangle$ and $D_u f(x, y) = a f_x(x, y) + b f_y(x, y)$.

Ex: Find the directional derivative $D_u f(x, y)$ if $f(x, y) = x^3 - 3xy + 4y^2$ and in the direction of $\theta = \pi/6$ to the x-axis. What is $D_u f(1,2)$?

Solution: The first thing we want to do is figure out what the unit direction vector is. Since we are given an angle with respect to the x-axis we use $\vec{u} = \langle \cos \pi/6, \sin \pi/6 \rangle = \langle \sqrt{3}/2, 1/2 \rangle$. Then

$$
D_u f(x, y) = f_x(x, y) \frac{\sqrt{3}}{2} + f_y(x, y) \frac{1}{2} = (3x^2 - 3y) \frac{\sqrt{3}}{2} + (-3x + 8y) \frac{1}{2} \Rightarrow D_u f(1, 2) = \frac{13 - 3\sqrt{3}}{2}.
$$

Now what does $af_x(x, y)+bf_y(x, y)$ remind us of? We can write this as $D_u f(x, y) = af_x(x, y)+bf_y(x, y)$ $\langle f_x(x, y), f_y(x, y)\rangle \cdot \langle a, b\rangle.$

Definition 1. If f is a function of two variables x and y, then the gradient of f is the vector function defined by

$$
\nabla f(x, y) = \langle f_x(x, y), f_y(x, y) \rangle = \frac{\partial f}{\partial x}\mathbf{\hat{i}} + \frac{\partial f}{\partial y}\mathbf{\hat{j}}.
$$
 (1)

Ex: If $f(x, y) = \sin x + e^{xy}$, then

$$
\nabla f(x,y) = \langle f_x, f_y \rangle = \langle \cos x + y e^{x,y}, x e^{x,y} \rangle \Rightarrow \nabla f(0,1) = \langle 2, 0 \rangle.
$$

Ex: Find the directional derivative of $f(x, y) = x^2y^3 - 4y$ at $(2, -1)$ in the direction of $\vec{v} = 2\hat{\imath} + 5\hat{\jmath}$. **Solution:** Notice that v is not a unit vector, so lets take care of that first,

$$
\vec{u} = \frac{\vec{v}}{\|\vec{v}\|} = \frac{2}{\sqrt{29}}\hat{\mathbf{i}} + \frac{5}{\sqrt{29}}\hat{\mathbf{j}}.
$$

Next,

$$
\nabla f(x, y) = 2xy^3 \mathbf{\hat{i}} + (3x^2y^2 - 4)\mathbf{\hat{j}} \Rightarrow \nabla f(2, -1) = -4\mathbf{\hat{i}} + 8\mathbf{\hat{j}}.
$$

Then $D_u f(2, -1) = \nabla f(2, -1) \cdot \mathbf{\vec{u}} = 32/\sqrt{29}.$

It should be noted that these concepts are easily extended to multiple dimensions. So, in 3-D

$$
\nabla f(x, y, z) = \langle f_x, f_y, f_z \rangle \tag{2}
$$

and

$$
D_u f(x, y, z) = \nabla f(x, y, z) \cdot \vec{u}.\tag{3}
$$

Ex: If $f(x, y) = x \sin(yz)$,

(a) find the gradient of f Solution:

$$
\nabla f = \langle \sin(yz), xz \cos(yz), xy \cos(yz) \rangle.
$$

(b) find the directional derivative of f at $(1, 3, 0)$ in the direction of $\vec{v} = \hat{\mathbf{i}} + 2\hat{\mathbf{j}} - \hat{\mathbf{k}}$. **Solution:** Again, \vec{v} is not a unit vector.

$$
\vec{u} = \frac{\vec{v}}{\|\vec{v}\|} = \frac{1}{\sqrt{6}}\hat{\mathbf{i}} + \frac{2}{\sqrt{6}}\hat{\mathbf{j}} - \frac{1}{\sqrt{6}}\hat{\mathbf{k}}.
$$

and

$$
\nabla f(1,3,0) = \langle 0,0,3 \rangle \Rightarrow D_u f(1,3,0) = \nabla f(1,3,0) \cdot \vec{u} = -\frac{3}{2}.
$$

Now suppose we want to find the fastest way to go up/down the hill, what direction do we choose? Another way to ask this is, what is the vector \vec{u} that gives us the maximum dot product $\nabla f \cdot \vec{u}$.

Theorem 2. Suppose f is a differentiable function, the maximum value of the directional derivative $D_u f$ is $\|\nabla f\|$ and it occurs when \vec{u} is in the same direction as ∇f .

- Ex: (a) If $f(x, y) = xe^y$, find the rate of change of f at the point $P(2, 0)$ in the direction from P to $Q(1/2, 2)$. **Solution:** $\vec{PQ} = \langle -3/2, 2 \rangle$, then the unit direction vector is $\vec{u} = \langle -3/5, 4/5 \rangle$ and $\nabla f = \langle e^y, xe^y \rangle \Rightarrow \nabla f(2,0) = \langle 1, 2 \rangle \Rightarrow D_u f(2,0) = \nabla f(2,0) \cdot \vec{u} = 1.$
	- (b) In what direction does f have the maximum rate of change? What is the value of the maximum rate of change?

Solution: Direction of maximum rate: $\nabla f(2,0) = \langle 1, 2 \rangle$ Value of maximum rate: $\|\nabla f(2, 0)\| = \|\langle 1, 2\rangle\| = \sqrt{5}$.

Ex: Suppose the temperature in this room is given by $T(x, y, z) = 80/(1 + x^2 + 2y^2 + 3z^2)$. In which direction does the temperature increase fastest at $(1, 1, -2)$? What is this value?

Solution: Fastest:

$$
\nabla T = \frac{160x\mathbf{\hat{i}} - 320y\mathbf{\hat{j}} - 480z\mathbf{\hat{k}}}{(1+x^2+2y^2+3z^2)^2}\bigg|_{(1,1,-2)} = \frac{5}{8}(-\mathbf{\hat{i}} - 2\mathbf{\hat{j}} + 6\mathbf{\hat{k}}).
$$

Value:

$$
\|\nabla T\| = \frac{5}{8} \| \langle -1, -2, 6 \rangle = \frac{5\sqrt{41}}{8} \approx 4^{\circ} \quad \text{C/m}
$$

If we go to 4-D just momentarily, we can find some really interesting properties of the gradient. Suppose a surface is defined by $F(x, y, z) = k$ (i.e., level surfaces), let $P(x_0, y_0, z_0)$ be a point on the surface, and consider a curve $\vec{r}(t) = \langle x(t), y(t), z(t) \rangle$ through P; i.e., $\vec{r}(t_0) = \langle x_0, y_0, z_0 \rangle$. Since \vec{r} is on the surface, $F(x(t), y(t), z(t)) = k$, and if we take the derivative using chain rule we get

$$
\frac{\partial F}{\partial x}\frac{dx}{dt} + \frac{\partial F}{\partial y}\frac{dy}{dt} + \frac{\partial F}{\partial z}\frac{dz}{dt} = 0.
$$

Notice that $\nabla F = \langle F_x, F_y, F_z \rangle$ and $\vec{r}' = \langle dx/dt, dy/dt, dz/dt \rangle$, then $\nabla F \cdot \vec{r}' = 0$. Specifically $\nabla F(x_0, y_0, z_0)$. $\vec{r}' = 0$ for any curve on the surface; i.e., $\nabla F(x_0, y_0, z_0)$ is the normal vector for the tangent plane.

The equation of the tangent plane to a surface can then be written as

$$
F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0.
$$
\n
$$
(4)
$$

Ex: Find the equations of the tangent plane and normal line at point $(-2, 1, -3)$ to the ellipsoid $x^2/4$ + $y^2 + z^2/9 = 3.$

Solution: Here
$$
k = 3
$$
, so $F(x, y, z) = x^2/4 + y^2 + z^2/9$, then $F_x = x/2$, $F_y = 2y$, $F_z = 2z/9$, so $\nabla F(-2, 1, -3) = \langle -1, 2, -\frac{2}{3} \rangle \Rightarrow -(x + 2) + 2(y - 1) - \frac{2}{3}(z + 3) = 0$,

.

and the normal line in symmetric form is

$$
\frac{x+2}{-1} = \frac{y-1}{2} = \frac{z+3}{-2/3}
$$

Notice that we can do this in 2-D too; i.e., the route of steepest ascent is always perpendicular to the contour lines.

11.7 EXTREMA

Definition 2. A function of two variables has a local maximum (respectively a local minimum) at (a, b) if $f(x, y) \leq f(a, b)$ (respectively $f(x, y) \geq f(a, b)$) when (x, y) is near (a, b) . The number $f(a, b)$ is called a local maximum value (respectively local minimum value).

Theorem 3. If f has a local maximum/minimum at (a, b) and f_x and f_y exist, then

$$
f_x(a, b) = f_y(a, b) = 0.
$$
\n(5)

A way we can interpret this is to say the tangent plane is parallel to the xy -plane.

Ex: Let $f(x,y) = x^2 + y^2 - 2x - 6y + 14$. Notice that this is a paraboloid. Then $f_x(x,y) = 2x - 2$, $f_y(x, y) = 2y - 6$, and $f_x = f_y = 0$ when $x = 1$, $y = 3$. In order to use our definition lets put this into standard form by completing the square:

$$
f(x, y) = 4 + (x - 1)^{2} + (y - 3)^{3}
$$

Notice that $f(1,3) = 4$ and since $(x - 1)^2$ and $(y - 3)^2$ are positive, $f(x, y) \ge 4$ for all x and y. Therefore, $(1, 3)$ is a minimum.

Ex: Find the extreme values of $f(x, y) = y^2 - x^2$, or show it does not exist.

Solution: $f_x = -2x = 0$, $f_y = 2y = 0$, then $(0, 0)$ is a critical point. However, on the x-axis for $x > 0$, $f(x, y) = -x^2 < 0$, and on the y-axis, if $y > 0$, $f(x, y) = y^2 > 0$. So, in any neighborhood around $(0,0)$ we have both $f < 0$ and $f > 0$. Therefore, no extrema exists. And this makes sense geometrically since the surface is a saddle.

But sometimes we don't want to do a geometric analysis. Is there an easier way?

Theorem 4 (Second derivative test). Suppose all second partial derivatives of f are continuous on a disk with center (a, b) , and suppose that $f_x = f_y = 0$ (i.e., (a, b) is a critical point of f). Let the Hessian be

$$
H(x,y) = \begin{vmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{vmatrix}
$$
 (6)

then

- (1) If $H(a, b) > 0$ and $f_{xx}(a, b) > 0$, $f(a, b)$ is a local minimum value.
- (2) If $H(a, b) > 0$ and $f_{xx}(a, b) < 0$, $f(a, b)$ is a local maximum value.
- (3) If $H(a, b) < 0$, $f(a, b)$ is neither a maximum or a minimum value (e.g. saddle.)