
Math 2450 Rahman Week 8

11.7 Extrema

Ex: Find the local maximum and minimum values and saddle points of f(x, y) = x4 + y4 − 4xy + 1.
Solution: First we take the derivatives and find the critical points.

fx = 4x3 − 4y = 0, fy = 4y3 − 4x = 0⇒ (x∗, y∗) = (0, 0), (1, 1), (−1,−1)

Next we apply the second derivative test.

fxx = 12x2, fx,y = fyx = −4, fyy = 12y2 ⇒ H = 144x2y2 − 16.

Then H(0, 0) = −16 < 0, so this is a saddle point, H(1, 1) = 128 > 0 and fxx(1, 1) = 12 > 0 so this is
a minimum, and H(−1,−1) = 128 > 0 and fxx(−1,−1) = 12 > 0 so this is a minimum as well.

Ex: Find the shortest distance from point (1, 0,−2) to the plane x+ 2y + z = 4.
Solution: Recall that the distance from any arbitrary point to the point (1, 0,−1) is d =√
(x− 1)2 + y2 + (z + 2)2, but we are looking at distances from the plane z = 4 − x − 2y, so

d =
√

(x− 1)2 + y2 + (6− x− 2y)2. We can minimize d by minimizing the simpler expression

d2 = f(x, y) = (x− 1)2 + y2 + (6− x− 2y)2.

Then

fx = 4x+ 4y − 14 = 0, fy = 4x+ 10y − 24 = 0⇒ (x∗, y∗) =
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then H(11/6, 5/3) = 24 > 0, so the critical point is a minima (as we expected it would be). Then
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Theorem 1 (Extreme value). If f is continuous on a closed, bounded set D ⊂ R2, then f attains an absolute
maximum value f(x1, y2) and an absolute minimum value f(x2, y2) at points (x1, y1) and (x2, y2) in D.

Lets see what this means in English.

How to find absolute maxima and minima of continuous functions

(1) Find the values of f at the critical points of D.
(2) Find the extreme values of f on the boundary of D.
(3) The largest (smallest) values from 1) and 2) is the absolute maximum (minimum).

Ex: Find the absolute maximum and minimum values of f(x, y) = x2 − 2xy + 2y on rectangle
D = {(x, y)|0 ≤ x ≤ 3, 0 ≤ y ≤ 2}.
Solution:
Step 1: fx = 2x − 2y = 0, fy = −2x + 2 = 0, then the critical point is (x∗, y∗) = (1, 1) and

f(1, 1) = 1.
Step 2: We have to now test each side of our rectangular domain (if you had a circular domain you

would have to convert the function and domain into polar coordinates and test the function at the
radius.) We will notice that the function f(x, y) turns into a single variable function, so we need to
look for max and min just as we did in Calc I for single variable functions: find the critical points and
end points and evaluate.
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y = 0: f(x, 0) = x2; 0 ≤ x ≤ 3. Critical points: f(0, 0) = 0. End points: f(3, 0) = 9, f(0, 0) = 0.
Notice that the critical point here is also an end point.
x = 3: f(3, y) = 9 − 4y; 0 ≤ y ≤ 2. Critical points: None. End points: f(3, 0) = 9, f(3, 2) = 1.

There are no critical points here because the function is linear.
y = 2: f(x, 2) = x2 − 4x + 4 = (x − 2)2; 0 ≤ x ≤ 3. Critical points: f(2, 2) = 0. End

points: f(0, 2) = 4, f(3, 2) = 1. Here we have one critical point in the middle. You can see this by
differentiating and setting it to zero.
x = 0: f(0, y) = 2y; 0 ≤ y ≤ 2. Critical points: None. End points: f(0, 0) = 0, f(0, 2) = 4. Again,

no critical points because it’s a linear function.

Step 3: Absolute maximum: f(3, 0) = 9 , Absolute minimum: f(0, 0) = f(2, 2) = 0 .

11.8 Lagrange multipliers

We know the fastest route is in the direction of the gradient;
i.e., straight up the mountain. In real life roads what is the
route up a mountain? Switchbacks; that is, the fastest route
along a particular level curve. Lets look at an easy example.
Suppose we want to maximize f(x, y) subject to the constraint
g(x, y) = k. Notice that the maximum is the value c where the
normal is in the same direction for g and f . What is the value
of the maximum c on the plot? 10. This means that f and g
will have the same gradient at (x0, y0) up to a scalar multiple;
i.e., ∇f(x0, y0) = λ∇g(x0, y0). The scalar multiple λ is called
the Lagrange multiplier.

(1) Find all values of x, y, z, and λ such that

∇f(x, y, z) = λ∇g(x, y, z) (2)

and
g(x, y, z) = k. (3)

(2) Evaluate f at all those values. Then the smallest value of f is the minimum and the largest
is the maximum.

Ex: Difficulty: Moderate A rectangular box (without the lid) is to be made of 12 mm2 of cardboard. Find
the maximum volume of such a box.

Solution: The volume is V = xyz and the surface area is A = 2xz + 2yz + xy = 12.

Step 1: First we calculate the two gradients,

∇V = 〈yz, xz, xy〉 and ∇A = 〈2z + y, 2z + x, 2x+ 2y〉
and since ∇V = λ∇A we get the following system of equations

yz = λ(2z + y),

xz = λ(2z + x),

xy = λ(2x+ 2y),

2xz + 2yz + xy = 12.



Step 2: Now we have to solve the system of equations. Notice that if we multiply the first three equations
by x, y, and z respectively we get equivalent left hand sides

xyz = λ(2xz + xy),

xyz = λ(2yz + xy),

xyz = λ(2xz + 2yz),

⇒ 2xz + xy = 2yz + xy = 2xz + 2yz.

From the first equality, if z 6= 0, we notice that

2xz + xy = 2yz + xy ⇒ 2xz = 2yz ⇒ x = y

and from the second equality, again if x 6= 0, we get

2yz + xy = 2xz + 2yz ⇒ xy = 2xz ⇒ y = 2z .

Notice that it is not a problem keeping z and x away from zero since our physical problem would collapse if
the former were true.

Finally, we write x and y in terms of z and plug it into the last equation

2xz + 2yz + xy = 12z2 = 12⇒ z = 1, x = y = 2 .

We could easily find λ, but it is not essential for this particular problem since we were able to solve it without
using λ.

Then our maximum volume is V = 4 m3.

Ex: Difficulty: Easy Find the extreme values of f(x, y) = x2 +
2y2 on circle x2 + y2 = 1.

Solution: Here the problem is set up for us, so we jump
right in

Step 1: ∇f = λ∇g ⇒ 〈2x, 4y〉 = λ〈2λx, 2λy〉, then our
system of equation is

2x = 2λx,

4y = 2λy,

x2 + y2 = 1

Step 2: From the first equation, either x = 0 or x 6= 0 ⇒
λ = 1, so if x 6= 0, we plug λ = 1 into the second equation

to get y = 0 . If we plug y = 0 into the third equation we get

x = ±1 , and f(±1, 0) = 1. On the other hand, if x = 0, y = ±1
when we plug x into the third equation, and f(0,±1) = 2.

Then the maximum is f(0,±1) = 2, and the minimum is
f(±1, 0) = 1.

Ex: Find the extreme values of f(x, y) = x2 + 2y2 on disk
x2 + y2 ≤ 1.

Solution: From the previous example the maximum must be f(0,±1) = 2, but since we are no long
restricted to the circle, we can go all the way to the origin, so the minimum is f(0, 0) = 0.



Ex: Difficulty: Hard Find points on the sphere x2 + y2 + z2 = 14 that are closest to and farthest from point
(3, 1,−1).

Solution: The function we want to maximize/minimize is the distance from an arbitrary point to

(3, 1,−1) and our constraint is the sphere. The distance is d =
√

(x− 3)2 + (y − 1)2 + (z + 1)2, but just as
before it is easier to work with the square and it gives us the same results, so

d2 = f(x, y, z) = (x− 3)2 + (y − 1)2 + (z + 1)2

and the constraint is
g(x, y, z) = x2 + y2 + z2 = 4.

Step 1: Just as before we take the gradients and set them equal with a Lagrange multiplier

∇f = λ∇g ⇒ 〈2(x− 3), 2(y − 1), 2(z + 1)〉 = λ〈2λx, 2λy, 2λz〉
then the system of equations is

2(x− 3) = 2λx

2(y − 1) = 2λy

2(z + 1) = 2λz

x2 + y2 + z2 = 4.

Step 2: Solving the first three equations gives us

x =
3

1− λ
, y =

1
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, z = − 1

1− λ
and plugging this into the last equation gives us
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which solves x, y, and z. Then the closest point is

f

(
6√
11
,

2√
11
,− 2√

11

)
and the farthest point is
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