11.7 EXTREMA

Ex: Find the local maximum and minimum values and saddle points of $f(x, y) = x^4 + y^4 - 4xy + 1$. Solution: First we take the derivatives and find the critical points.

$$
f_x = 4x^3 - 4y = 0, \quad f_y = 4y^3 - 4x = 0 \Rightarrow (x_*, y_*) = (0, 0), (1, 1), (-1, -1)
$$

Next we apply the second derivative test.

$$
f_{xx} = 12x^2, \ f_{x,y} = f_{yx} = -4, \ f_{yy} = 12y^2 \Rightarrow H = 144x^2y^2 - 16.
$$

Then $H(0,0) = -16 < 0$, so this is a saddle point, $H(1,1) = 128 > 0$ and $f_{xx}(1,1) = 12 > 0$ so this is a minimum, and $H(-1, -1) = 128 > 0$ and $f_{xx}(-1, -1) = 12 > 0$ so this is a minimum as well.

Ex: Find the shortest distance from point $(1, 0, -2)$ to the plane $x + 2y + z = 4$.

 $\sqrt{(x-1)^2+y^2+(z+2)^2}$, but we are looking at distances from the plane $z = 4-x-2y$, so **Solution:** Recall that the distance from any arbitrary point to the point $(1, 0, -1)$ is $d =$ $d = \sqrt{(x-1)^2 + y^2 + (6-x-2y)^2}$. We can minimize d by minimizing the simpler expression

$$
d^{2} = f(x, y) = (x - 1)^{2} + y^{2} + (6 - x - 2y)^{2}
$$

Then

$$
f_x = 4x + 4y - 14 = 0, f_y = 4x + 10y - 24 = 0 \Rightarrow (x_*, y_*) = \left(\frac{11}{6}, \frac{5}{3}\right)
$$

Next

$$
f_{xx}\left(\frac{11}{6},\frac{5}{3}\right) = 4 > 0, f_{xy}\left(\frac{11}{6},\frac{5}{3}\right) = f_{yx}\left(\frac{11}{6},\frac{5}{3}\right) = 4 f_{yy}\left(\frac{11}{6},\frac{5}{3}\right) = 10,
$$

1/6, 5/2, 24 > 0, so the critical point is a minus (as we moved it we

then $H(11/6, 5/3) = 24 > 0$, so the critical point is a minima (as we expected it would be). Then

$$
d\left(\frac{11}{6},\frac{5}{3}\right) = \sqrt{\left(\frac{5}{6}\right)^2 + \left(\frac{5}{3}\right)^2 + \left(\frac{5}{6}\right)^2} = \frac{5}{\sqrt{6}}.
$$
 (1)

.

.

Theorem 1 (Extreme value). If f is continuous on a closed, bounded set $D \subset \mathbb{R}^2$, then f attains an absolute maximum value $f(x_1, y_2)$ and an absolute minimum value $f(x_2, y_2)$ at points (x_1, y_1) and (x_2, y_2) in D.

Lets see what this means in English.

How to find absolute maxima and minima of continuous functions

- (1) Find the values of f at the critical points of D .
- (2) Find the extreme values of f on the boundary of D .
- (3) The largest (smallest) values from 1) and 2) is the absolute maximum (minimum).

Ex: Find the absolute maximum and minimum values of $f(x, y) = x^2 - 2xy + 2y$ on rectangle $D = \{(x, y) | 0 \le x \le 3, 0 \le y \le 2\}.$

Solution:

Step 1: $f_x = 2x - 2y = 0$, $f_y = -2x + 2 = 0$, then the critical point is $(x_*, y_*) = (1, 1)$ and $f(1, 1) = 1.$

Step 2: We have to now test each side of our rectangular domain (if you had a circular domain you would have to convert the function and domain into polar coordinates and test the function at the radius.) We will notice that the function $f(x, y)$ turns into a single variable function, so we need to look for max and min just as we did in Calc I for single variable functions: find the critical points and end points and evaluate.

 $y = 0$: $f(x, 0) = x^2$; $0 \le x \le 3$. Critical points: $f(0, 0) = 0$. End points: $f(3, 0) = 9$, $f(0, 0) = 0$. Notice that the critical point here is also an end point.

 $x = 3$: $f(3, y) = 9 - 4y$; $0 \le y \le 2$. Critical points: None. End points: $f(3, 0) = 9$, $f(3, 2) = 1$. There are no critical points here because the function is linear.

 $y = 2$: $f(x, 2) = x^2 - 4x + 4 = (x - 2)^2$; $0 \le x \le 3$. Critical points: $f(2, 2) = 0$. End points: $f(0, 2) = 4$, $f(3, 2) = 1$. Here we have one critical point in the middle. You can see this by differentiating and setting it to zero.

 $x = 0$: $f(0, y) = 2y$; $0 \le y \le 2$. Critical points: None. End points: $f(0, 0) = 0$, $f(0, 2) = 4$. Again, no critical points because it's a linear function.

Step 3: Absolute maximum: $|f(3,0) = 9|$, Absolute minimum: $|f(0,0) = f(2, 2) = 0|$.

11.8 Lagrange multipliers

We know the fastest route is in the direction of the gradient; i.e., straight up the mountain. In real life roads what is the route up a mountain? Switchbacks; that is, the fastest route along a particular level curve. Lets look at an easy example. Suppose we want to maximize $f(x, y)$ subject to the constraint $g(x, y) = k$. Notice that the maximum is the value c where the normal is in the same direction for q and f . What is the value of the maximum c on the plot? 10. This means that f and g will have the same gradient at (x_0, y_0) up to a scalar multiple; i.e., $\nabla f(x_0, y_0) = \lambda \nabla g(x_0, y_0)$. The scalar multiple λ is called the Lagrange multiplier.

(1) Find all values of x, y, z , and λ such that

Ex: Difficulty: Moderate A rectangular box (without the lid) is to be made of 12 mm² of cardboard. Find the maximum volume of such a box.

Solution: The volume is $V = xyz$ and the surface area is $A = 2xz + 2yz + xy = 12$.

Step 1: First we calculate the two gradients,

and

is the maximum.

$$
\nabla V = \langle yz, xz, xy \rangle
$$
 and $\nabla A = \langle 2z + y, 2z + x, 2x + 2y \rangle$

and since $\nabla V = \lambda \nabla A$ we get the following system of equations

$$
yz = \lambda(2z + y),
$$

\n
$$
xz = \lambda(2z + x),
$$

\n
$$
xy = \lambda(2x + 2y),
$$

\n
$$
2xz + 2yz + xy = 12.
$$

Step 2: Now we have to solve the system of equations. Notice that if we multiply the first three equations by x, y , and z respectively we get equivalent left hand sides

$$
xyz = \lambda(2xz + xy),
$$

\n
$$
xyz = \lambda(2yz + xy),
$$

\n
$$
xyz = \lambda(2xz + 2yz),
$$

\n
$$
\Rightarrow 2xz + xy = 2yz + xy = 2xz + 2yz.
$$

From the first equality, if $z \neq 0$, we notice that

$$
2xz + xy = 2yz + xy \Rightarrow 2xz = 2yz \Rightarrow \boxed{x = y}
$$

and from the second equality, again if $x \neq 0$, we get

$$
2yz + xy = 2xz + 2yz \Rightarrow xy = 2xz \Rightarrow y = 2z.
$$

Notice that it is not a problem keeping z and x away from zero since our physical problem would collapse if the former were true.

Finally, we write x and y in terms of z and plug it into the last equation

$$
2xz + 2yz + xy = 12z^2 = 12 \Rightarrow \boxed{z = 1, x = y = 2}.
$$

We could easily find λ , but it is not essential for this particular problem since we were able to solve it without using λ .

Then our maximum volume is $V = 4 \text{ m}^3$.

Ex: Difficulty: Easy Find the extreme values of $f(x, y) = x^2 +$ $2y^2$ on circle $x^2 + y^2 = 1$.

Solution: Here the problem is set up for us, so we jump right in

Step 1: $\nabla f = \lambda \nabla g \Rightarrow \langle 2x, 4y \rangle = \lambda \langle 2\lambda x, 2\lambda y \rangle$, then our system of equation is

$$
2x = 2\lambda x,
$$

\n
$$
4y = 2\lambda y,
$$

\n
$$
x^2 + y^2 = 1
$$

Step 2: From the first equation, either $x = 0$ or $x \neq 0 \Rightarrow$ $\lambda = 1$, so if $x \neq 0$, we plug $\lambda = 1$ into the second equation to get $|y = 0|$. If we plug $y = 0$ into the third equation we get $x = \pm 1$, and $f(\pm 1, 0) = 1$. On the other hand, if $x = 0, y = \pm 1$ when we plug x into the third equation, and $f(0, \pm 1) = 2$.

Then the maximum is $f(0, \pm 1) = 2$, and the minimum is $f(\pm 1, 0) = 1.$

Ex: Find the extreme values of $f(x,y) = x^2 + 2y^2$ on disk $x^2 + y^2 \leq 1.$

Solution: From the previous example the maximum must be $f(0, \pm 1) = 2$, but since we are no long restricted to the circle, we can go all the way to the origin, so the minimum is $f(0, 0) = 0$.

Ex: Difficulty: Hard Find points on the sphere $x^2 + y^2 + z^2 = 14$ that are closest to and farthest from point $(3, 1, -1)$.

Solution: The function we want to maximize/minimize is the distance from an arbitrary point to $(3, 1, -1)$ and our constraint is the sphere. The distance is $d = \sqrt{(x-3)^2 + (y-1)^2 + (z+1)^2}$, but just as before it is easier to work with the square and it gives us the same results, so

$$
d2 = f(x, y, z) = (x - 3)2 + (y - 1)2 + (z + 1)2
$$

and the constraint is

$$
g(x, y, z) = x^2 + y^2 + z^2 = 4.
$$

Step 1: Just as before we take the gradients and set them equal with a Lagrange multiplier

$$
\nabla f = \lambda \nabla g \Rightarrow \langle 2(x-3), 2(y-1), 2(z+1) \rangle = \lambda \langle 2\lambda x, 2\lambda y, 2\lambda z \rangle
$$

then the system of equations is

$$
2(x-3) = 2\lambda x
$$

\n
$$
2(y-1) = 2\lambda y
$$

\n
$$
2(z+1) = 2\lambda z
$$

\n
$$
x^{2} + y^{2} + z^{2} = 4.
$$

Step 2: Solving the first three equations gives us

$$
x = \frac{3}{1 - \lambda}
$$
, $y = \frac{1}{1 - \lambda}$, $z = -\frac{1}{1 - \lambda}$

and plugging this into the last equation gives us

$$
\frac{3^2}{(1-\lambda)^2} + \frac{1}{(1-\lambda)^2} + \frac{(-1)^2}{(1-\lambda)^2} = 4 \Rightarrow (1-\lambda)^2 = \frac{11}{4} \Rightarrow \boxed{\lambda = 1 \pm \frac{\sqrt{11}}{2}},
$$

which solves x, y , and z . Then the closest point is

$$
f\left(\frac{6}{\sqrt{11}}, \frac{2}{\sqrt{11}}, -\frac{2}{\sqrt{11}}\right)
$$

and the farthest point is

$$
f\left(-\frac{6}{\sqrt{11}}, -\frac{2}{\sqrt{11}}, \frac{2}{\sqrt{11}}\right)
$$