
Math 491-695 Rahman Week 11

Lecture ten: Fractals

Cardinality of sets. We looked at some examples of finite sets in class, but what
happens when two sets are infinite. Is one infinity bigger than the other? Notice
that we can count the natural numbers, but we can’t count say the real numbers,
so there must be a difference between these two sets.

Definition 1. A set S is said to be countably infinite if there is a one-to-one
function from N to S.

So the question we must ask when we are thinking about infinities is, can we
write the elements of S as a sequence? Notice for 0, 1, 2, 3, . . . our function is,
f(n) = n− 1 for n ∈ N.

Definition 2. A set S is said to be countable if it is either finite or countably
infinite, otherwise it is said to be uncountable.

Notice that the reals are uncountable. Now to prove this takes a bit of effort,
but we can intuitively see it when we try to “count” the reals.

Cantor set. A Cantor set is any set homeomorphic to C = Π∞n=1Fn, where each
Fn is the two-point space {0,1}. This is however a complicated definition, and
requires a knowledge of topology. Instead of defining it topologically it is usefull to
construct the set and present pictoral examples.

The Cantor set is constructed from the set of Real numbers in the unit interval
[0, 1]. Lets call the intial set S0. For the first iteration a fraction α is taken away
from S0 such that S1 contains two disconnected sets of Real numbers [0, 12 (1− α)]

and [1 − 1
2 (1 − α), 1]. Lets a := 1

2 (1 − α) and b := 1 − 1
2 (1 − α), and call [0, a]

S1a and [b, 1] S1b. For the second iteration take away the fraction α from S1a and
S1b such that S2 contains four disconnected sets of Real numbers [0, 12 (a − αa)],

[a− 1
2 (a− αa), a], [b, b+ 1

2 (a− αa)], and [1− 1
2 (a− αa), 1]. This is continued until

S∞ is reached, and S∞ is called the Cantor set; more specifically the middle - α
Cantor set. Two illustrations are shown in Figure .

Figure 1. Example of set S7. Wikipedia.

For the sake of rigor a closed form formula for each iteration is needed. It is easy
to see S1 = 1

2 (1−α)S0∪[ 12 (1+α)+ 1
2 (1−α)S0]. The formula for S2, S3, etc may seem

somewhat difficult to derive, but with a little inspection and some computations a
repeating pattern is seen. Notice S2 = 1

2 (1 − α)S1 ∪ [ 12 (1 + α) + 1
2 (1 − α)S1] and

S3 = 1
2 (1−α)S2 ∪ [ 12 (1 +α) + 1

2 (1−α)S2]. We may assume the formula for the nth

case follows this pattern.
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Sn =
1

2
(1− α)Sn−1 ∪ [

1

2
(1 + α) +

1

2
(1− α)Sn−1] (1)

0 < α < 1, S0 = [0, 1], n 6=∞

The proof of n arbitrarily large is shown, however for n = ∞ a more rigorous
proof is required.

Proof. By definition

S0 = [0, 1].

It is easy to see

S1 =
1

2
(1− α)S0 ∪ [

1

2
(1 + α) +

1

2
(1− α)S0] = [0,

1

2
(1− α)] ∪ [1− 1

2
(1− α), 1],

is true.
Assume

Sn =
1

2
(1− α)Sn−1 ∪ [

1

2
(1 + α) +

1

2
(1− α)Sn−1],

is true.
It can be shown

Sn+1 =
1

2
(1− α)Sn ∪ [

1

2
(1 + α) +

1

2
(1− α)Sn].

Let

βn =
1

2
(1− α)βn−1 ∪ [

1

2
(1 + α) +

1

2
(1− α)βn−1], (2)

and

βn−1 = Sn =
1

2
(1− α)Sn−1 ∪ [

1

2
(1 + α) +

1

2
(1− α)Sn−1] (3)

Plugging Equation 3 into Equation 2 gives,

βn =
1

2
(1− α)Sn ∪ [

1

2
(1 + α) +

1

2
(1− α)Sn] = Sn+1

By induction

Sn =
1

2
(1− α)Sn−1 ∪ [

1

2
(1 + α) +

1

2
(1− α)Sn−1]

S0 = [0, 1], n 6=∞

thereby completing the proof. �

Some Important Properties of Cantor Sets.

(1) Cantor sets are self-similar fractals.
• Cantor sets look the same no matter the level at which they are seen.

All n+ 1 sections of Sn looks the same as S0 when magnified.
(2) Cantor sets are completely disconnected.

• There are no intervals within a Cantor set (i.e. it has a topological
dimension of zero, however it has a nonzero fractal dimension).

(3) Cantor sets have a measure of zero.
• The length of Sn is α∞. When n =∞ the length of Sn is zero, because

0 < α < 1.



• Another way to find the measure is to subtract the measure of the
complement of the Cantor set from the total length of [0,1]. The
length of the complement of the Cantor set is

∞∑
n=0

(
1

α
− 1)nαn+1 = α

∞∑
n=0

(
1

α
− 1)nαn = α

∞∑
n=0

(1− α)n =
α

α
= 1 (4)

(4) Cantor sets are uncountable.
• This can be shown by using Cantor’s diagonal argument.

Dimension of self-similar fractals. Notice that the Cantor set seems one di-
mensional, but has more structure than a one dimensional object. But of course,
it’s not two dimensional. How do we rectify this? For a one dimensional object
for example, we only have one copy and it’s never scaled down. For a self similar
fractal at each iteration we make more copies and they are all scaled down. Take
the Cantor set for example, we make n = 2 copies and scale them down by r = 3,
so we can relate how the copies scale down as n = rd, then d = ln(n)/ ln(r), then
the dimension of the Cantor set is d = ln(2)/ ln(3), so it’s between one and two
dimensions.

In class we also discussed the von Koch curve shown bellow,

Notice that this makes n = 4 copies and scales by a factor of r = 3, so it will be
between one and two dimensions: d = ln(4)/ ln(3).

Box dimension. The idea of the box dimension is to cover the entire set with
the minimum number of boxes of size ε. Let N be the number of boxes, then
d = limε→0 lnN/ ln(1/ε). This works well for, say the non self similar version of
the Sierpinski carpet, shown bellow, but rarely works in practice for general fractals.



Fractals in chaos. In phase space chaotic systems very typically have fractal
structure. For example, strange attractors, horseshoes, period doubling, and others
all have fractal structure. One way we can think of the dimension of an object is the
number of times a trajectory intersects balls around various points. This is called
the correlation dimension, which we discussed in class. However, as we discussed
this can only give us an approximation. There are also sets where the dimension
varies from one region to another, this is called multifractals, but we wont get into
it in this class.


