
Math 491-695 Rahman Week 2

Lecture Two: Review of some basics of Dynamical Systems

Consider plants in a small garden. Let x = 0 represent an empty garden and
x = 1 represent a “full” garden. Suppose that the birth rate is equivalent to the
population size, and the death rate is equivalent to the square of the population
size. We can model this as follows,

ẋ = f(x) = x− x2. (1)

First we wish to find the fixed points, x∗ = 0, 1. Now we can draw the vector field,
as done in class. Notice that we allow x > 1, but this means that the garden is
over capacity and plants die off due to crowding. Recall that we may determine
the stability without graphical means by taking the derivative,

f ′(x∗) = 1− 2x∗ ⇒ f ′(0) > 0, f ′(1) < 0.

So, x∗ = 0 is unstable and x∗ = 1 is stable. However, this fails for fixed points
where f ′(x∗) = 0. This is called a nonhyperbolic fixed point. A hyperbolic fixed
point is the case in our example where f ′(x∗) 6= 0.

Consider further an animal that eats the plants at a 1 : 1 rate is introduced
into the system. Suppose that the birth rate is equivalent to the population size of
the plants, and the death rate is equivalent to its population size. Further, assume
the animals’ poop acts like a fertilizer, effectively doubling the plants’ population
growth rate. We can model this as follows,

ẋ = 2x− x2 − y,
ẏ = x− y. (2)

First we look for the nullclines, i.e. curves such that ẋ = 0 or ẏ = 0,

ẋ = 0⇒ y = 2x− x2,
ẏ = 0⇒ y = x.

Recall that fixed points are the intersection points of these nullclines, so our fixed
points are, (x∗, y∗) = (0, 0), (1, 1). Now we find the Jacobian in order to find the
eigenvalues and eigenvectors for the respective fixed points. The general Jacobian
for this system is,

J(x∗, y∗) =

(
2− 2x∗ −1

1 −1

)
(3)

Then respectively we have,

J(0, 0) =

(
2 −1
1 −1

)
; J(1, 1) =

(
0 −1
1 −1

)
(4)

Then the eigenvalues for (x∗, y∗) = (0, 0) are,

J(x∗, y∗) =

∣∣∣∣ 2− 2λ −1
1 −1− λ

∣∣∣∣ = λ2 − λ− 1 = 0⇒ λ =
1

2
±
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5

2
.

And the eigenvalues for (x∗, y∗) = (1, 1) are,

J(x∗, y∗) =

∣∣∣∣ −λ −1
1 −1− λ

∣∣∣∣ = λ2 + λ+ 1 = 0⇒ λ = −1
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Then the respective eigenvectors are,(
3
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√
5
2 −1

1 − 3
2 ∓

√
5
2

)
v = 0⇒ v =
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3
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2

)
And (

1
2 ∓ i

√
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√
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)
v = 0⇒ v =

(
1

1
2 ∓ i

√
3
2

)
From all this information we can manually sketch the phase plane. However, for
the sake of illustration I have done this on pplane,
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Moving on, lets recall what potentials are. Consider the system ẋ = f(x),
then the potential for this system is V (x) such that f(x) = −dV/dx. Also recall,
dV/dt = (dV/dx)(dx/dt) = −(dV/dx)2 because ẋ = −dV/dx. So, V (t) decreases
along trajectories, i.e. things go from higher to lower potential.

Now we can discuss conservative systems. A system where there is a quantity
that is invariant along the flow. A special type of conservative system is called a
Hamiltonian system, which is just a reformulation of F = ma for point particles
in a force field. Recall, if we have a system ẋ = f(x, y), ẏ = g(x, y) and there
exists an H such that ∂H/∂y = f(x, y) and ∂H/∂x = −g(x, y) then the system
is a Hamiltonian system and the conserved quantity H is a Hamiltonian. Then
the level sets H = E(x, y) are invariant. Example: Pendulum. In class I quickly
sketched the phase plane of this.

Finally, recall that sometimes we are interested in flows on a circle. These
systems are of the kind θ̇ = f(θ). Notice that we can transform this system into
ẋ = f(x) such that f(0) ≡ f(1), i.e. we need only identify x = 0 with x = 1. This
will be useful to us when we study Peixoto’s structural stability theorem.


