
Math 491-695 Rahman Week 4

Lecture Four: Maps! What are they good for!?

Maps are more natural models to certain physical systems, namely systems with
natural recurrence. they can be easier to analyze sometimes. They are much easier
to simulate (analyze numerically). This is because ODEs require complicated -
slow numerical schemes, and sometimes that doesn’t even work. Maps only require
loops carrying out a couple of arithmetic operations.

Definition 1. Maps are time discrete dynamical systems represented by the re-
currence relation

xm+1 = f(xm); xm ∈ Rn (1)

One great thing about maps is that we can create very simple examples of chaos
since we aren’t restricted by the dimensions of the dynamical system. Lets recall
what some properties of maps are. We define the fixed point as x∗ = f(x∗). This
is done because limn→∞ xn+1 = limn→∞ xn. Consider xn+1 = x2n, to find the fixed
point we do, x2∗ − x∗ = 0, so our fixed points are x∗ = 0, 1.

For stability all eigenvectors corresponding to |λ| < 1 are the stable direction, all
eigenvectors corresponding to |λ| > 1 are the unstable direction, and all eigenvectors
corresponding to |λ| = 1 form the center subspace. It’s easy to prove this in 1-D.

Proof. Consider xn = x∗ + ξn, then x∗ + ξn+1 = xn+1 = f(x∗ + ξn). We can find
the Taylor series of f , f(x + ξn) = f(x∗) + f ′(x∗)ξn + o(ξ2n). Since f(x∗) = x∗,
ξn+1 = f ′(x∗)ξn + o(ξ2n). Suppose ξn+1 ≈ f ′(x∗)ξn, and let λ = f ′(x∗). Now, since
ξ1 = λξ0, by induction ξn = λnξ0, where ξ0 is a constant. Therefore, if |λ| < 1,
ξn → 0 exponentially fast as n → ∞; if |λ| > 1, ξn → 0 exponentially fast as
n→ −∞; if |λ| = 1, ξn grows subexponentially, i.e. o(ξ2n) matter. �

Now, consider the logistic map: xn+1 = rxn(1 − xn). This comes from similar
ideas to the logistic ODE, but xn = 1 represents absolute capacity, i.e. if we have
plants, there are so many that the soil becomes so devoid of nutrition that it can
never sustain life again. The fixed point for this map is x∗ = (r−1)/r. For stability
we take the derivative f ′(x∗) = r− 2rx∗ = 2− r, so x∗ is unstable for r < 1, stable
for 1 < r < 3, and unstable for r > 3. For the stable case there’s no ambiguity
but for the unstable case we don’t know in which way it’s unstable, and for the
borderline cases we don’t even know the stability.

In order to rectify this, we may use cobweb plots to help us illustrate the global
behavior of a system at a glance. We did examples of cobwebs in class.

As with continuous systems, discrete systems experience bifurcations and contain
periodic orbits. Lets not discuss bifurcations too much, but you should read up on
them on pg. 358. What is a periodic orbit for a discrete system?

Definition 2. We say a point x̂ is contained in a k-cycle if x̂ = fk(x̂) and x̂ 6=
fk−1(x̂), where fk is the kth iteration of xn+1 = f(xn).
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Consider the map xn+1 = 2 − xn, then f2(x̂) = f(f(x̂)) = 2 − (2 − x̂) = x̂. So
every point for this map is in some 2-cycle. This is a trivial example, so lets look at
the logistic map. f2(x)−x = r2x(1−x)[1−rx(1−x)]−x = 0. Factoring out x and

x− (r − 1)/r gives, x̂ = (r + 1±
√

(r − 3)(r + 1))/2r. So these are the two points
in the two cycle. Notice that for certain values of r the discriminant is negative,
and hence x̂ is not real, therefore for those values of r there is no two cycle.

For the logistic map, from r = 3 the fixed point starts to bifurcate into a 2-cycle,
then a 4-cycle, then eventually to chaos. This is called period doubling. There’s
more on it on pg. 353.

A useful tool to quantify “sensitive dependence” is Liapunov exponents. If δ0 is
the initial separation, |δn| = |δ0|enλ, then

λ = lim sup
n→∞

1

n

n−1∑
i=0

ln |f ′(xi)|. (2)

The derivation for this is on pg. 366. We derive the formula for the Liapunov
exponents of the logistic map in class.


