
Math 491-695 Rahman Week 5

Lecture Five: Poincaré Maps and Structural Stability

Lecture Five Part I: Poincaré Maps. First lets write down a few key defini-
tions.

Definition 1. Suppose ϕt(x∗) is a periodic orbit of ẋ = f(x), where f is continu-
ously differentiable, of period T ,

Γ = {x ∈ Rn : x = ϕt(x∗), 0 ≤ t ≤ T}. (1)

Definition 2. Let Σ be the hyperplane orthogonal to Γ at x∗,

Σ = {x ∈ Rn : (x− x∗) · f(x∗) = 0}. (2)

Theorem 1. There is an ε > 0 and a unique function τ(x), which is continuously
differentiable for x ∈ Bε(x∗) such that τ(x∗) = T and ϕτ(x)(x) ∈ Σ for all x ∈
Bε(x∗).

Definition 3. For x ∈ Bε(x∗)∪Σ, the function P (x) = ϕτ(x)(x) is called a Poincaré
map for Γ at x∗.

Ex Consider the following ODE,

ẋ = −y + x(1− x2 − y2)

ẏ = x+ y(1− x2 − y2)
(3)

We notice that we can write this in polar coordinates via the transfor-
mation, x = r cos θ and y = r sin θ,

ṙ = r(1− r2)

θ̇ = 1
(4)

Now, we notice that the fixed points of the r equation correspond to
limit cycles of the x, y equation. Therefore, we have a limit cycle when
r = 1, which corresponds to (x, y) = (cos t, sin t)T . We can solve this via
separation,

r =

√
1 +

(
1

r(0)2
− 1

)
e−2t,

θ = t+ θ(0).

Let θ(0) = θ0, r(0) = r0, and Σ be the ray θ = θ0 through the origin.
Then, Σ is orthogonal to Γ, which has a period of T = 2π, so the Poincaré
map is

rn+1 = P (rn) =

√
1 +

(
1

r2n
− 1

)
e−4π. (5)
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Notice that r∗ = 1. We wish to use the Poincaré map to find the stability
of this limit cycle, so we take the derivative,

P ′(rn) = e−4πr−3n

[
1 +

(
1

r2n
− 1

)
e−4π

]−3/2
⇒ |P ′(1)| = e−4π < 1.

In general it’s impossible to write down the Poincaré map explicitly, but there
are theorems to help our analysis.

Lecture Five Part II: Structural Stability. In class I basically outlined the
ideas from my paper. You can access it here: http://arxiv.org/abs/1306.0436

Instead of rewriting it here, I will only go through the details of some of the
examples I provided in the paper.

Ex (Homeomorphism) Consider the function h : (0,∞) → (0, 1) defined by

h =
(
1 + x2

)−1
. Lets prove that this is a homeomorphism.

Proof. First lets show the inverse exists, i.e. the inverse is well defined on
the codomain. We compute the inverse to be h−1 =

√
1− 1/x, which is

defined for all x ∈ (0, 1).
Next lets show that it is injective (i.e. one-to-one). Suppose h(a) = h(b),

then (1 + a2)−1 = (1 + b2)−1 ⇒ 1 + b2 = 1 + a2 ⇒ b2 = a2, and since
a, b ∈ (0,∞), b = a.

Now lets show that it is surjective (i.e. onto). Consider y ∈ (0, 1), then

if h(x) = y, x =
√

1− 1/y ∈ (0,∞).

Finally, we show that it is continuous. We see that h(x = c) =
(
1 + c2

)−1 ∈
(0, 1), and limx→c h(x) = h(c) ∈ (0, 1).

Similarly the inverse is injective, surjective, and continuous. �

Ex (Topological Equivalence) Consider the dynamical systems θ̇ = sin θ
and ϕ̇ = cosϕ. Lets prove that these are topologically equivalent on S1.

Proof. Notice that if ϕ = θ − π/2, our functions are equivalent. So, our
homeomorphism is, h : S1 → S1 defined by h(θ) = θ − π/2. �

http://arxiv.org/abs/1306.0436
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