MATH 491-695 RAHMAN Week 5

LECTURE FIVE: POINCARE MAPS AND STRUCTURAL STABILITY

Lecture Five Part I: Poincaré Maps. First lets write down a few key defini-
tions.

Definition 1. Suppose ¢;(x,) is a periodic orbit of & = f(z), where f is continu-
ously differentiable, of period T,

F={zeR":2=q¢(z.),0<t<T}. (1)
Definition 2. Let ¥ be the hyperplane orthogonal to I' at x.,
Y={xeR": (z—ux,) - f(z.) =0} (2)

Theorem 1. There is an € > 0 and a unique function 7(x), which is continuously
differentiable for x € B.(x.) such that 7(z.) = T and p,;)(x) € X for all v €
B.(z4).

Definition 3. For x € B.(z.)UY, the function P(x) = ¢, (,)(z) is called a Poincaré
map for I at z,.

Ex Consider the following ODE,

i=—y+a(l-z?—y? 3)
g=z+y(l—a®—y?)

We notice that we can write this in polar coordinates via the transfor-
mation, x = rcosf and y = rsinf,

r=r(l—r?
i1 (4)

Now, we notice that the fixed points of the r equation correspond to
limit cycles of the z,y equation. Therefore, we have a limit cycle when
r = 1, which corresponds to (z,y) = (cost,sint)”. We can solve this via

separation,
r=14/1+ L 1)e2t
r(0)? ’

0=t+0(0).

Let 6(0) = 6y, r(0) = 19, and X be the ray 6§ = 6y through the origin.
Then, ¥ is orthogonal to I', which has a period of T' = 27, so the Poincaré

map is
— - 1 4
Tyl = Plry) = 4/14+ - 1) e4r. (5)




Notice that r, = 1. We wish to use the Poincaré map to find the stability
of this limit cycle, so we take the derivative,

) 1 —-3/2
P'(rp) = e *™r,® [1 + <2 - 1) 64”} = |P'(1)]=e*" < 1.

In general it’s impossible to write down the Poincaré map explicitly, but there
are theorems to help our analysis.

Lecture Five Part II: Structural Stability. In class I basically outlined the
ideas from my paper. You can access it here: http://arxiv.org/abs/1306.0436

Instead of rewriting it here, I will only go through the details of some of the
examples I provided in the paper.

Ex (Homeomorphism) Consider the function h : (0,00) — (0,1) defined by
h= (1 + xz) ' Lets prove that this is a homeomorphism.

Proof. First lets show the inverse exists, i.e. the inverse is well defined on
the codomain. We compute the inverse to be h™! = /1 — 1/x, which is
defined for all z € (0,1).

Next lets show that it is injective (i.e. one-to-one). Suppose h(a) = h(b),
then (1+a?)™t =1+ = 1+0 =1+a®> = b = a? and since
a,b € (0,00), b=a.

Now lets show that it is surjective (i.e. onto). Consider y € (0, 1), then
if h(z) =y, z=+/1—1/y € (0,00).

Finally, we show that it is continuous. We see that h(x = ¢) = (1 + cz) -
(0,1), and lim, . h(z) = h(c) € (0,1).

Similarly the inverse is injective, surjective, and continuous. (Il

1

Ex (Topological Equivalence) Consider the dynamical systems 6 = sinf
and ¢ = cos . Lets prove that these are topologically equivalent on S'.

Proof. Notice that if ¢ = 6 — 7/2, our functions are equivalent. So, our
homeomorphism is, h : S* — S! defined by h(f) = 0 — w/2. O


http://arxiv.org/abs/1306.0436
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