MATH 491-695 RAHMAN Week 8

LECTURE SEVEN: THE DOUBLE PENDULUM

Consider a double pendulum such as the one in Figure 1, where the first pen-
dulum has a massless rod of length L; and mass of m, and the second pendulum
has a massless rod of length Lo and mass of mq. Let ¢1 and @2 be the angles the
respective rods make with respect to the vertical axis.

FIGURE 1

The vertical distance of the first mass from equilibrium will be L (1 — cos ¢1),
hence the potential energy of the first mass will be

Up =migLi(1 —cosr). (1)
The vertical distance of the second mass from its equilibrium with respect to the

first mass will be La(1 — cos 2), but the position of the first mass is L1 (1 — cos ¢1)
hence the potential energy of the second mass will be

Uz = mag[La(1 — cospa) 4+ Li(1 — cos )] (2)
Therefore, the total potential energy will be

U=U,+U;=(m1+mga)gLl1(1 —cospr)+ magLa(l — cos p2). (3)
Now for the kinetic energy, the tangential velocity of the first mass will be L1,
hence the kinetic energy of the first mass will be

1 ,
Ty = §m1L%<P% (4)

The velocity of the second mass with respect to the first mass in the tangential
direction will be Ljpo, but we must also consider the velocity contribution from
the first mass which occurs at the angle 3 — 1, so our kinetic energy becomes,

1 . » ~
Ty = 5malL3Q] + 2L Lagipa cos(p1 — 2) + L3G3). (5)

Therefore, the total kinetic energy will be



1 ) .. 1 .
T=T+T= §(m1 + mg)Lfgo? + moLq1Log1$a cos(pr — w2) + imnggag. (6)

Most texts employ a small angle approximation at this point in order to simplify
the modeling, and to end up with an analytic solution. We, on the other hand,
make no such approximation, which will necessitate the use of numerics.

Now, the Lagrangian is

1 . .. 1 )
L=T-U =§(m1 +ma2)L3pT + maLy Lap1a cos(pr — pa2) + §m2L§<P§

— (m1 +ma2)gL1(1 — cos 1) — magLa(1 — cos p2). (7)
So,
oL 9. )
RN = (m1+mao)Lip1 +maLiLaps cos(p1 — ¢2)
d
a% =(m1 + ma) L1 + maLyLa@s cos(p1 — ¢2)
— (1 — Y2)ma Ly Logo sin(p1 — @2). (8)
and
oL .. .
574,01 = —mgoLi Lop1posin(pr — p2) — (M1 + me)gLi sin . (9)
Further,
oL . .
9%, = m2L3902+m2L1L2801 cos(p1 — ¥2)
P2
d oL . .
> W0, =moL3(p2 + maLiLa@1 cos(pr — ¢2)
— (1 — P2)maLy Lapr sin(pr — p2). (10)
and
oL .. .
57802 = maL1Lap1pasin(pr — p2) — magLssin ps. (11)

Now, the equation for ¢ is

1
my + ma) Lo — maLy cos?(p1 — 1

$1 = ){*msz cos(p1 — @2)[(P1 — p2) L1prsin(pr — p2)

+ Liprgasin(pr — @2) + gsinpa] + (1 — p2)maLapa sin(er — ¢2)
— m2L2¢1¢2 Sin(gpl — (pg) — (m1 + mg)g sin <,01} (12)

and the equation for ¢ is



s L, —cos(p1 — p2)

+ Liprpasin(pr — @2) + gsin o] + (1 — P2)ma Loz sin(pr — 2)
—maLaprpasin(pr — p2) — (m1 +ma)gsing:} + (1 — P2) L1 sin(pr — )
+ Ligrpa sin(pr — @2) + gsin 902} (13)

Suppose we want to make our lives harder and modeled a double pendulum with
arms of uniform nontrivial mass. We need to find the center of mass for each arm
in relation to the angles 6, and 6,

1.
T] = ?smﬁl,

L
ro = Lisinf; + 72 sin 0y,
Y1 = 7?2(308017

L
yo = —Lqicosfy + 72 cos 05.
We also have to include rotational kinetic energy,
1 . . 1 . .
= [Ileg n zgeg} = [mlLfef n mngeg} ,
the the Lagrangian is,

1 . . . . 1 . .
L= 3 [ma (&7 + 97) + mo (i3 + 93)] 51 [mlL%gf + mngazﬂ —(m1gy1 +magy2),
(14)
where
Ly .

il = 7191 COS&l,
. - Ly,
To = L1071 cos 1 + 792 cos 0o,

Lo .
U1 = =26, sin 61,
2
. Lo .
yg = L291 sin 6‘1 — ?292 Sineg.

After this point the algebra becomes quite tedious, but if anyone is adventurous
enough they can crank it out on Mathematica.
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