
Math 3351 Rahman Final Exam Review

Linear Algebra

• Know how to multiply matrices!

• Know how to take the determinant of a 2× 2 matrix.

• Solving 2 × 2 eigenvalue problems Ax = λx: Find the eigenvalues, then find the corresponding
eigenvectors.

• Know the three types of eigenvalues for 2× 2 matrices:
– Distinct Real Eigenvalues (i.e. positive discriminant)
– Repeated Real Eigenvalues (i.e. zero discriminant)
– Complex Conjugate Eigenvalues (i.e. negative discriminant)

Matrix ODEs

• Solve for the eigenvalues and eigenvectors of a 2× 2 matrix ODE.

• Know the general form of solutions for the three cases: Distinct Real, Repeated Real, and Complex
Conjugate eigenvalues.

• Solve an IVP.

Dynamical Systems

• Find fixed points.

• Linearize about fixed points (i.e. the first nonconstant term in the Taylor series of the nonlinear
function).

• Find the eigenvalues for each linearized matrix. No need to find eigenvectors in this class, although
they are important.

• State the stability of each fixed point with proper reasoning.

• Sketch a complete phase portrait: fixed points and important trajectories. No need to find nullclines
in this class, although they too are important.
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1. Heat Equation

∂u

∂t
= K

∂2u

∂x2
(1)

• Plug in separation of variables Ansatz into the equation to get the ODEs

T ′ = −Kλ2T ; X ′′ + λ2X = 0. (2)

• The T solution is easiest: T = e−Kλ
2t.

• The X equation gives us a Sturm–Liouville problem:
– Solve for λ = 0: X = c1x+ c2. Plug in BCs to solve for constants.
– Solve for λ 6= 0: X = A cosλx + B sinλx. Plug in BCs to solve for one constant and the

eigenvalue λ2.

• Write the general solution u(x, t) = TX as a Fourier series.

• Plug in the one initial condition to find the other constants for the complete solution.

1.1. Nonhomogeneous BCs.

• Find the equilibrium solution u∗(x) by solving uxx = 0.

• Plug in the nonhomogeneous BCs to u∗ to solve for the constants.

• Make the change of variables v(x, t) = u(x, t)− u∗(x).

• Plug back into the original nonhomogeneous PDE to get

∂v

∂t
= K

∂2v

∂x2
; v(0, t) = v(L, t) = 0; v(x, 0) = u(x, 0)− u∗(x). (3)

2. Wave Equation

∂2u

∂t2
= c2

∂2u

∂x2
(4)

• Plug in separation of variables Ansatz into the equation to get the ODEs

T ′′ + c2λ2T = 0; X ′′ + λ2X = 0 (5)

• Because T must be sinusoidal, λ 6= 0, so the ODEs give the solutions

T = C1 cos cλt+ C2 sin cλt; X = D1 cosλx+D2 sinλx (6)

• Plug the BCs into X to get one constant and the eigenvalue λ2.

• Write the general solution u(x, t) = TX as a Fourier series.

• Plug in the two initial conditions to find the other constants for the complete solution.



3. Laplace Equation

∂2u

∂x2
+
∂2u

∂y2
= 0. (7)

• Plug in the separation Ansatz into the equation to get X′′

X = −Y
′′

Y .

• Determine which direction gives us a Sturm–Liouville problem; i.e., which direction has homogeneous
BCs. If it is the x direction, let the equation above equal −λ2. If it is the y direction, let the equation
equal λ2.

• The Sturm–Liouville problem will give you sine and cosine solutions and the other ODE will give
you sinh and cosh solutions.

• Solve the Sturm–Liouville problem for λ = 0 and λ 6= 0.

• Plug in the homogeneous BCs into the Sturm–Liouville solution to find the constants and eigenvalue.

• Write the general solution u(x, y) = XY as a Fourier series.

• Plug in the nonhomogeneous boundary conditions to find the other constants for the complete
solution.

3.1. Laplace in Polar Coordinates.

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
= 0. (8)

• There is one boundary at the radius, which gives us a condition on either u or its derivative. However,
we need another condition in the r direction and two in φ.

– r direction: |u(r = 0, θ)| <∞; i.e. things better stay bounded in the center.
– θ direction: u(r, π) = u(r,−π) and u′(r, π) = u′(r,−π).

• Plug in the separation Ansatz to get the ODEs

φ′′ + λ2φ = 0; r2ρ′′ + rρ′ − λ2ρ = 0 (9)

• The φ equation is our Sturm–Liouville problem since it has periodic conditions, and because these
conditions never change we always get the following

φ′′ + λ2φ = 0⇒ φ = A cosλθ +B sinλθ

φ(π) = φ(−π)⇒ A cosλπ +B sinλπ = A cosλπ −B sinλπ ⇒ λ = n

φ′(π) = φ′(−π)⇒ −An sinnπ +Bn cosnπ = An sinnπ +Bn cosnπX

So, both these conditions give us the same results

λ = n⇒ φ = A cosnθ +B sinnθ (10)

• For the ρ equation we will also get the same solution every time

n = 0 :ρ = C1 + C2 ln r; |u(r = 0, θ)| <∞⇒ C2 = 0⇒ ρ = C1

n 6= 0 :ρ = C3r
−n + C4r

n; |u(r = 0, θ)| <∞⇒ C3 = 0⇒ ρ = C4r
n

• Now we put this into the general solution, which again, will be the same every time

u(r, θ) = C1 +

∞∑
n=1

Anr
n cosnθ +Bnr

n sinnθ (11)

• Using the natural boundary condition at the radius, solve for the constants.


