
Math 3351 Rahman Week 13

14.1 and 14.2 PDEs in Polar and Cylindrical Coordinates

We derived the Laplacian in polar coordinates in class, which gave us
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Cylindrical coordinates is just like polar coordinates, except with an added vertical component that doesn’t
add any complications. So we shall focus on polar coordinates.

Now, consider a disk of radius R. Since we have a second order PDE in two spatial directions, we need
two boundary conditions in each direction. The natural boundary condition is u(r = R, θ) = f(θ), but we
need another one. Notice that in our new Laplacian we have 1/r and 1/r2, so we have the minor issue of a
singularity at the origin. Since we know things don’t blow up unless you give it greater and greater energy,
we require |u(r = 0, θ)| < ∞. Now, for the θ direction, we have a case similar to the circular rod problem
we did. Since this is periodic we require u(r, π) = u(r,−π) and uθ(r, π) = uθ(r,−π).

There is another slight complication for this. In order to solve the PDE we need to know how to solve
the Cauchy–Euler equation:

x2y′′ + αxy′ + βy = 0. (2)

Preliminaries: Cauchy–Euler Equation. Consider the ODE

x2y′′(x) + αxy′(x) + βy(x) = 0 (3)

This has a singular point because if we put this into standard form we get
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which violates the existence and uniqueness theorem at x = 0. We obviously don’t know how to deal with
this problem. But there is a similar problem that we do know how to deal with,

y′′(ξ) + ay′(ξ) + by(ξ) = 0 (4)

Basically we need to make a change of variables on x in order to get rid of the x′s in the coefficients. What
do we know that gives us 1/x every time we differentiate? ξ = lnx does the trick. Taking the derivatives
are a little different than what we are used to, but very intuitive due to Leibniz notation
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Plugging this back into (3) gives us
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dξ
+ βy = y′′ + ay′ + by = 0

To solve (4) we use the ansatz y = exp(rξ), so to solve (3) we use y = xr. Lets think of a slightly more
general second order ODE for this part

Ax2y′′ +Bxy′ + Cy = 0

Then plugging into this gives

Ax2[r(r − 1)]xr−2 +Bxrxr−1 + Cxr = Ar(r − 1)xr +Brxr + Cxr = 0⇒ Ar(r − 1) +Br + C = 0.

This is our characteristic polynomial of Euler’s equation. And we have the usual cases:

Cases Solution Comment
Distinct Roots y = c1x

r1 + c2x
r2

Repeated Roots y = (c1 + c2 ln |x|)xr because ξ = lnx
Complex Conjugate Roots y = xλ(A cos(µ lnx) +B sin(µ lnx)) where r = λ± iµ

Now lets do some problems
1



Ex: y′′ − y′ + y = 0
Solution: The characteristic polynomial is r(r − 1)− r + 1 = r2 − 2r + 1 = (r − 1)2 = 0, so we

have repeated roots r = 1, then y = (c1 + c2 ln |x|)x; x 6= 0.
Ex: y′′ − 4y′ + 4y = 0

Solution: The characteristic polynomial is r(r− 1)− 4r+ 4 = r2 − 5r+ 4 = (r− 1)(r− 4) = 0,
then y = c1x+ c2x

4; x 6= 0.
Ex: y′′ + 2y′ + 4y = 0

Solution: The characteristic polynomial is r(r−1)+2r+4 = r2+r+4 = 0, then r = (−1±i
√

5)/2,
so

y = |x|−1/2
[
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(√
15

2
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)
+B sin

(√
15

2
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)]
.

Now, we are equipped to solve Laplace’s equation on a disk.

Ex: Consider the steady-state heat conduction problem
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Solution: Let u(r, θ) = ϕ(θ)ρ(r). Plugging into the PDE gives us
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Notice that our Sturm–Liouville problem would be in the θ direction since we don’t have homogeneous
boundary conditions in r, but we do have periodic boundary conditions in θ, which behave similarly
to homogeneous boundary conditions as we saw with the circular rod problem. So, we let the RHS
be λ2; i.e. (

r2ρ′′ + rρ′
) 1

ρ
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ϕ
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This gives us two ODEs with the corresponding boundary conditions

ϕ′′ + λ2ϕ = 0; ϕ(π) = ϕ(−π), ϕ′(π) = ϕ′(−π)

r2ρ′′ + rρ− λ2ρ = 0; |ρ(0)| <∞
(6)

Notice that we leave out the outer boundary condition (the only prescribed condition) since we need
the full equation to satisfy it because it is nonhomogeneous, nonperiodic, and not a bound.

Now, since θ is periodic, it must either be sinusoidal or a constant; i.e., it can’t be linear or
exponential (no sinh and/or cosh). So we get

ϕ = C1 cos(λθ) + C2 sin(λθ)

Invoking the periodic boundary condition gives us

ϕ(−π) = ϕ(π)⇒ C1 cos(λπ)− C2 sin(λπ) = C1 cos(λπ) + C2 sin(λπ)⇒ sin(λπ) = 0⇒ λ = n.

We can verify the same result for the derivative.
Now we solve the ρ equation. For n = 0 we have

r2ρ′′ + rρ′ = 0⇒ µ(µ− 1) + µ = µ2 = 0⇒ ρ = D1 +D2 ln r

Notice that we could also solve this ODE via separation of variables, but this way is less time
consuming. Since |u(0, θ)| <∞, D2 = 0⇒ ρ = D1.

Now, we look at n 6= 0,

r2ρ′′ + rρ′ − n2ρ = 0⇒ µ(µ− 1) + µ− n2 = µ2 − n2 = 0⇒ µ = ±n⇒ ρ = D2r
n +D3r

−n.

Since |u(0, θ)| <∞, D3 = 0, then ρ = D2r
n. Therefore, the general solution is

u(r, θ) = D1 +

∞∑
n=1

Anr
n cos(nθ) +Bnr

n sin(nθ). (7)



Now we must satisfy the boundary condition

u(R, θ) = D1 +
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This is just like our Fourier series, so in general we get the coefficients by doing the following integrals
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