MATH 3351 RAHMAN Week 13

14.1 AND 14.2 PDEs IN POLAR AND CYLINDRICAL COORDINATES

We derived the Laplacian in polar coordinates in class, which gave us
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Cylindrical coordinates is just like polar coordinates, except with an added vertical component that doesn’t
add any complications. So we shall focus on polar coordinates.

Now, consider a disk of radius R. Since we have a second order PDE in two spatial directions, we need
two boundary conditions in each direction. The natural boundary condition is u(r = R,0) = f(6), but we
need another one. Notice that in our new Laplacian we have 1/r and 1/72, so we have the minor issue of a
singularity at the origin. Since we know things don’t blow up unless you give it greater and greater energy,
we require |u(r = 0,0)| < co. Now, for the # direction, we have a case similar to the circular rod problem
we did. Since this is periodic we require u(r,7) = u(r, —7) and ug(r, 7) = ug(r, —7).

There is another slight complication for this. In order to solve the PDE we need to know how to solve
the Cauchy—Euler equation:

?y" + axzy' + By = 0. (2)
Preliminaries: Cauchy—Euler Equation. Consider the ODE
2?y" () + azy'(x) + By(z) = 0 (3)

This has a singular point because if we put this into standard form we get
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which violates the existence and uniqueness theorem at x = 0. We obviously don’t know how to deal with
this problem. But there is a similar problem that we do know how to deal with,

y" (&) +ay'(§) +by(§) =0 (4)

Basically we need to make a change of variables on x in order to get rid of the z’s in the coefficients. What
do we know that gives us 1/z every time we differentiate? & = Inx does the trick. Taking the derivatives
are a little different than what we are used to, but very intuitive due to Leibniz notation
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Plugging this back into (3) gives us
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To solve (4) we use the ansatz y = exp(ré), so to solve (3) we use y = x”. Lets think of a slightly more
general second order ODE for this part

Az?y" + Bxy' +Cy =0
Then plugging into this gives
A2’[r(r = 1)]a" "% + Bara”™ + Ca" = Ar(r —1)2" 4 Bra” + Ca" = 0= Ar(r — 1)+ Br + C = 0.

This is our characteristic polynomial of Euler’s equation. And we have the usual cases:

Cases Solution Comment
Distinct Roots y=c1x"™ + cox"
Repeated Roots y=(c1+celnlz|)z” because € = Inx
Complex Conjugate Roots | y = 2*(Acos(uInz) + Bsin(ulnz)) | where r = X + iy

Now lets do some problems
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Ex: vy —y +y=0
Solution: The characteristic polynomial is r(r — 1) —r+1=7%2 —=2r+ 1= (r — 1)2 = 0, so we
have repeated roots r = 1, then y = (¢1 + co In|z|)z; z # 0.
Ex: v/ — 4y +4y =0
Solution: The characteristic polynomial is r(r —1) —4r+4 =712 —5r+4 = (r —1)(r —4) =0,
then y = c12 + coxt; z # 0.
Ex: vy 4+2y +4y=0
Solution: The characteristic polynomial is 7(r—1)+2r+4 = r2+4+r+4 = 0, then r = (—1+i\/5)/2,

A cos <\/21751n|x|> + Bsin <\/2175 ln|x>] .

Now, we are equipped to solve Laplace’s equation on a disk.
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Ex: Consider the steady-state heat conduction problem
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Solution: Let u(r,0) = p(0)p(r). Plugging into the PDE gives us

—0;  u(r=R,0) =f(0) (5)
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Notice that our Sturm—Liouville problem would be in the 6 direction since we don’t have homogeneous
boundary conditions in r, but we do have periodic boundary conditions in #, which behave similarly
to homogeneous boundary conditions as we saw with the circular rod problem. So, we let the RHS

be \Z; ie.
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This gives us two ODEs with the corresponding boundary conditions

P+ Xo=0;  o(r)=p(-m), ¢(r)=¢'(-7)
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Notice that we leave out the outer boundary condition (the only prescribed condition) since we need
the full equation to satisfy it because it is nonhomogeneous, nonperiodic, and not a bound.

Now, since 6 is periodic, it must either be sinusoidal or a constant; i.e., it can’t be linear or
exponential (no sinh and/or cosh). So we get

© = C1 cos(A0) + Cysin(A0)

Invoking the periodic boundary condition gives us
o(—m) = p(r) = Cy cos(Ar) — Cysin(Ar) = C; cos(Am) + Cysin(Ar) = sin(Ar) =0 = A =n.
We can verify the same result for the derivative.

Now we solve the p equation. For n = 0 we have

2o 4 =0=pp—1)+p=p>=0=p=D;+ DyInr

Notice that we could also solve this ODE via separation of variables, but this way is less time
consuming. Since |u(0,6)| < oo, Dy =0 = p = D;.

Now, we look at n # 0,

2" 4 —nPp=0=pup—1)+p-—nt=p?>—n*=0=p==4n=p=Dyr" + D3r "
Since |u(0,0)| < co, D3 = 0, then p = Dor™. Therefore, the general solution is
u(r,0) = Dy + Z Apr™ cos(nf) + B,r" sin(nd). (7)
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Now we must satisfy the boundary condition

u(R,0) = Dy + Z ApR" cos(nb) + B, R" sin(nd) = f(0)
n=1

This is just like our Fourier series, so in general we get the coefficients by doing the following integrals
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B,R" = 1 £(0) sin(nd)do
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