
Math 3351 Rahman Week 6

12.2: Fourier Series

This definition allows us to construct a space of functions out of two simple functions. Now equipped
with our new machinery we can derive a series representation that is ideal for periodic functions. We did
this in class, but here I shall just remind you of the formulas:

Fourier Series.

f(x) =
a0
2

+

∞∑
n=1

[
an cos

(nπx
L

)
+bn sin

(nπx
L

)]
;

an =
1

L

∫ L

−L
f(x) cos

(nπx
L

)
, bn =

1

L

∫ L

−L
f(x) sin

(nπx
L

) (1)

Now lets do some problems. While a lot of these want plotting, we did them in class, so I won’t show
them here, but make sure you know how to plot these things.

Ex: Find the Fourier Series of the function

f(x) =

{
1 − L < x < 0,

0 0 ≤ x < L;

(a) Sketch it!
(b) We first do a0

a0 =
1

L

∫ L

−L
f(x)dx =

1

L

∫ 0

−L
dx = 1.

Notice that we always do a0 separately. Then we do an

an =
1

L

∫ L

−L
f(x) cos

(nπx
L

)
dx =

1

L

∫ 0

−L
cos
(nπx
L

)
dx =

���
���

���:
0

1

nπ
sin
(nπx
L

) ∣∣∣∣0
−L

Finally, for bn

bn =
1

L

∫ L

−L
f(x) sin

(nπx
L

)
dx =

1

L

∫ 0

−L
sin
(nπx
L

)
dx = − 1

nπ
cos
(nπx
L

) ∣∣∣∣0
−L

= − 1

nπ
+

1

nπ
cos(nπ) =

−1 + (−1)n

nπ
= − 2

nπ

{
1 nodd, i.e. n = 2k + 1; k = 0, ±1, ±2, . . .

0 neven, i.e. n = 2k; k = 0, ±1, ±2, . . .

Then our Fourier series becomes

f(x) =
1

2
− 2

π

∞∑
n=0

1

2k + 1
sin

(
1

L
(2k + 1)πx

)
.

Ex: Find the Fourier Series of the function f(x) = x2/2 on [−2, 2]
(a) Plot it!
(b) Again, we do a0 first

a0 =
1

L

∫ L

−L
f(x)dx =

1

2

∫ 2

−2

x2

2
dx =

x3

12

∣∣∣∣2
−2

=
4

3
.

1



Now to do an we need to do by parts twice, which you can do yourselves. I’ll just give the final
form of the antiderivative.

an =
1

L

∫ L

−L
f(x) cos

(nπx
L

)
dx =

1

2

∫ 2

−2

x2

2
cos
(nπx

2

)
dx =

∫ 2

0

x2

2
cos
(nπx

2

)
dx

=

[
2x2

nπ
sin
(nπx

2

)
+

8x

(nπ)2
cos
(nπx

2

)
− 16

(nπ)3
sin
(nπx

2

)]2
0

=
8

(nπ)2
cos(nπ) = (−1)n

8

(nπ)2
.

For bn we get

bn =
1

L

∫ L

−L
f(x) sin

(nπx
L

)
dx =

1

2

∫ 2

−2

x2

2
sin
(nπx
L

)
dx = 0.

because we are integrating an odd function on a symmetric interval. Then our Fourier series is

f(x) =
2

3
+

8

π2

∞∑
n=1

(−1)n

n2
cos
(nπx

2

)
.

15) This is a book problem.
First we find a0

a0 =
1

π

∫ π

−π
exdx =

1

π
ex
∣∣∣∣π
−π

=
1

π

(
epi− e−π

)
=

2

π
sinhπ

Then we find an via “by parts” using u = cosnx⇒ du = −n sinnxdx and dv = exdx⇒ v = ex

an =
1

π

∫ π

−π
ex cosnxdx =

1

π

[
ex cosnx

∣∣∣∣π
−π

+ n

∫ π

−π
ex sinxdx

]
Then we do another by parts: u = sinnx⇒ du = n cosnx and dv = exdx⇒ v = ex

1

π

ex cosnx

∣∣∣∣π
−π

+ n


��

�
��
�*0

ex sinnx

∣∣∣∣π
−π
− n

∫ π

−π
ex cosnxdx




=
1

π

{(
eπ − e−π

)
(−1)n − n2

∫ π

−π
ex cosnxdx

}
= (−1)n

2

π
sinhπ − n2

π

∫ π

−π
ex cosnxdx

Now we notice that we have
∫ π
−π e

x cosnxdx on both the right and left hand sides, so we can combine
them,

n2 + 1

π

∫ π

−π
ex cosnxdx = (−1)n

2

π
sinhπ ⇒ an =

(−1)n

n2 + 1
· 2

π
sinhπ

For bn we have something similar so I will skip a bunch of steps,

bn =
1

π

∫ π

−π
ex sinnxdx =

1

π

{
−ex sinnx

∣∣∣∣π
−π
− n

[
ex cosnx

∣∣∣∣π
−π

+ n

∫ π

−π
ex sinnxdx

]}

⇒ n2 + 1

π

∫ π

−π
ex sinnxdx = −(−1)n

2n

π
sinhπ ⇒ bn = − (−1)n

n2 + 1
· 2n

π
sinhπ

Then the Fourier Series is

f(x) =
2

π
sinhπ

[
1

2
+

∞∑
n=1

(−1)n

n2 + 1
(cosnx− n sinnx)

]
.



12.3: Even and Odd Functions

As we saw for the last problem in the preceding section, it can be useful to know whether or not a function
is odd or even. Also, many times we will want the Fourier series of a non-periodic function. In order to
do this we need to create a periodic function that includes our non-periodic function. Instead of creating
something that is neither odd nor even if we create an even or odd function we can save a lot of time. Before
we see these techniques lets define some terms and develop the theory.

Definition 1. Consider the function f(x) such that f(−x) = f(x), then f is said to be even.

Definition 2. Consider a function f(x) such that f(−x) = −f(x), then f is said to be odd.

There are some important properties that we should keep in mind.

Properties.

• Sum/difference of two even functions is even.
• Sum/difference of two odd functions is odd.
• Sum/difference of an even and an odd function is neither even nor odd.
• Product/quotient of two even functions is even.
• Product/quotient of two odd functions is even.
• Product/quotient of an even function and an odd function is odd.

• If f is even,
∫ L
−L f(x)dx = 2

∫ L
0
f(x)dx.

• If f is odd,
∫ L
−L f(x)dx = 0.

Now we can think of a Fourier cosine series and Fourier sine series. These can be derived straight from
the Fourier series equations so it’s best not to memorize these formulas.

Fourier cosine series. If f is an even periodic function generated on −L ≤ x ≤ L, then bn = 0, so

f(x) =
a0
2

+

∞∑
n=1

an cos
(nπx
L

)
an =

2

L

∫ L

0

f(x) cos
(nπx
L

)
dx

(2)

Fourier sine series. If f is an odd periodic function generated on −L ≤ x ≤ L, then an = 0, so

f(x) =

∞∑
n=1

bn sin
(nπx
L

)
bn =

2

L

∫ L

0

f(x) sin
(nπx
L

)
dx

(3)

For the next few problems we just apply the definition of odd and even functions.

(1) Odd 5) Even 6) Neither



Periodic Extensions. Suppose a function f is defined only on [0, L]. If we want to find the Fourier series
of this we need to make a periodic function that “includes” f . These are called periodic extensions and can
either be odd or even.

For these problems we did the sketching in class. Here I will do the problems that requires calculations

Ex: Find the Fourier Sine Series of f(x) = L− x on [0, L].
(a) Notice that for odd extensions our periodic function of period 2L becomes

g(x) =

{
−f(−x) −L < x < 0,

f(x) 0 < x < L;
=

{
−L− x −L < x < 0,

L− x 0 < x < L;

We know that for odd extensions we’ll get a sine series so we only do the sine calculations,

bn =
2

L

∫ L

0

(L−x) sin
(nπx
L

)
dx = −(L−x)

2

nπ
cos
(nπx
L

) ∣∣∣∣L
0

+
2

nπ

∫ L

0

cos
(nπx
L

)
dx =

2L

nπ
+
���

���
���

�:0
2L

(nπ)2
sin
(nπx
L

) ∣∣∣∣L
0

Then our Fourier sine series is

f(x) =
2L

π

∞∑
n=1

1

n
sin
(nπx
L

)
.

(b) Sketch the solution for L = 4.
Ex: Find the Fourier Sine and Cosine series of the following function

f(x) =

{
x for 0 < x < 1,

0 for 1 < x < 2

(a) Sketch the even and odd extensions of the function.
(b) For the cosine series we have

a0 =
2

L

∫ L

0

f(x)dx =

∫ 1

0

xdx =
1

2
.

and

an =
2

L

∫ L

0

f(x) cos
(nπx
L

)
dx =

∫ 1

0

x cos
(nπx

2

)
dx =

2x

nπ
sin
(nπx

2

)
+

4

(nπ)2
cos
(nπx

2

) ∣∣∣∣1
0

=
2

nπ
sin
(nπ

2

)
+

4

(nπ)2
cos
(nπ

2

)
− 4

(nπ)2
.

Notice that for this problem we can’t simplify the indices in any reasonable manner, so we leave
it as is. So the Fourier cosine series is

f(x) =
1

4
+

∞∑
n=1

[
2

nπ
sin
(nπ

2

)
+

4

(nπ)2
cos
(nπ

2

)
− 4

(nπ)2

)
cos
(nπx

2

)
.

Now, for the sine series we have

bn =
2

L

∫ L

0

f(x) sin
(nπx
L

)
dx =

∫ 1

0

x sin
(nπx

2

)
dx = − 2x

nπ
cos
(nπx

2

)
+

4

(nπ)2
sin
(nπx

2

) ∣∣∣∣1
0

= − 2

nπ
cos
(nπ

2

)
+

4

(nπ)2
sin
(nπ

2

)
Then our Fourier series is

f(x) =

∞∑
n=1

[
− 2

nπ
cos
(nπ

2

)
+

4

(nπ)2
sin
(nπ

2

)]
sin
(nπx

2

)


