MATH 3351 RAHMAN

Week 6

12.2: FOURIER SERIES

This definition allows us to construct a space of functions out of two simple functions. Now equipped
with our new machinery we can derive a series representation that is ideal for periodic functions. We did
this in class, but here I shall just remind you of the formulas

Fourier Series.

43" o (57) s ()] )
/f nﬂ'x /f sin nﬂ'ac)

Now lets do some problems. While a lot of these want plotting, we did them in class, so I won’t show
Ex:

them here, but make sure you know how to plot these things
Find the Fourier Series of the function
1 —L<x<0,
x
/(@) { 0 0<z <L

(a) Sketch it!
(b) We first do ag
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Notice that we always do ag separately. Then we do a,
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Then our Fourier series becomes
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Ex: Find the Fourier Series of the function f(z) = 22/2 on [-2, 2]

(a) Plot it!
(b) Again, we do ag first
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Now to do a, we need to do by parts twice, which you can do yourselves. I'll just give the final
form of the antiderivative.
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For b,, we get

1 b 1 /2 42
bn:Z/_Lf(x)sin($)dx=5/2%5111(?)@6:0.

because we are integrating an odd function on a symmetric interval. Then our Fourier series is
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15) This is a book problem.
First we find ag
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Then we find a,, via “by parts” using v = cosnr = du = —nsinnxdz and dv = e*dr = v = €”
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Then we do another by parts: u = sinnx = du = ncosnz and dv = e*dr = v = €”
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Now we notice that we have f:r e” cosnaxdx on both the right and left hand sides, so we can combine
them,
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For b,, we have something similar so I will skip a bunch of steps,
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Then the Fourier Series is
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12.3: EVEN AND ODD FUNCTIONS

As we saw for the last problem in the preceding section, it can be useful to know whether or not a function
is odd or even. Also, many times we will want the Fourier series of a non-periodic function. In order to
do this we need to create a periodic function that includes our non-periodic function. Instead of creating
something that is neither odd nor even if we create an even or odd function we can save a lot of time. Before
we see these techniques lets define some terms and develop the theory.

Definition 1. Consider the function f(z) such that f(—x) = f(x), then f is said to be even.
Definition 2. Consider a function f(x) such that f(—z) = —f(x), then f is said to be odd.

There are some important properties that we should keep in mind.

Properties.
e Sum/difference of two even functions is even.
Sum/difference of two odd functions is odd.
Sum/difference of an even and an odd function is neither even nor odd.
Product/quotient of two even functions is even.
Product/quotient of two odd functions is even.
Product/quotient of an even function and an odd function is odd.

If f is even, ffL flx)dx = 2f0L f(z)dz.
o If fisodd, [, f(x)dz =0,

Now we can think of a Fourier cosine series and Fourier sine series. These can be derived straight from
the Fourier series equations so it’s best not to memorize these formulas.

Fourier cosine series. If f is an even periodic function generated on —L < x < L, then b, =0, so

f(z) = % +T§ancos (%)
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Fourier sine series. If f is an odd periodic function generated on —L < x < L, then a, = 0, so
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For the next few problems we just apply the definition of odd and even functions.

(1) Odd 5) Even 6) Neither



Periodic Extensions. Suppose a function f is defined only on [0, L]. If we want to find the Fourier series

of this we need to make a periodic function that “includes” f. These are called periodic extensions and can
either be odd or even.

For these problems we did the sketching in class. Here I will do the problems that requires calculations
Ex: Find the Fourier Sine Series of f(z) = L — x on [0, L].
(a) Notice that for odd extensions our periodic function of period 2L becomes

(z) = —f(-z) -L<x<0, [-L-z —-L<z<0,
g = f(x) 0<z<L; |L-z 0<z<L;

We know that for odd extensions we’ll get a sine series so we only do the sine calculations,

2 L nmx 2 nmx 2 L nmx 2L 2L n
by, = T o i <7l> dr = —(L— 77-‘- (71) 77-(-/ ( [ ) dx = 77-‘- A 7{
/0 (L—x)sin T (L—x) —cos ) + ) cos T=

Then our Fourier sine series is
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(b) Sketch the solution for L = 4.
Ex: Find the Fourier Sine and Cosine series of the following function

f(x):{ T for0<a <1,

0 forl<z<?2

(a) Sketch the even and odd extensions of the function.
(b) For the cosine series we have
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Notice that for this problem we can’t simplify the indices in any reasonable manner, so we leave
it as is. So the Fourier cosine series is
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Now, for the sine series we have
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Then our Fourier series is




