
Math 3351 Rahman Week 7

12.5 Boundary Value Problems

We are used to initial value problems where we are given initial data. What if we are given boundary
data instead? There are many applications where things are happening for a long period of time and we
don’t know what happened in the beginning, but we do know something about the boundary. The usual
problems are solved in a similar fashion to Initial Value Problems. We do however have a bit more theory.

Definition 1. The boundary values (for a second order ODE) y(a), y(b), y′(a), and/or y′(b) are said to be
homogeneous if any two of the above boundary data are zero.

We also have eigenvalue problems for BVPs. Recall that for matrices the eigenvalue problems were of the
form Ax = λx, where we solve for the “eigenvalue”, λ. For BVPs of a second order ODE, we consider our
linear operator to be L = d2/dx2 (for matrices the linear operator is the matrix A). So we wish to solve the
problem Ly = λy; i.e. y′′ + λy = 0. Here the y′ns corresponding to λ′ns are called eigenfunctions (similar to
eigenvectors in the matrix case). We notice that eigenvalue problems are only for homogeneous boundary
data.

Definition 2. The boundary value problem

y′′ + λy = 0; (with homogeneous boundary conditions), (1)

is called an eigenvalue problem. And the nontrivial (i.e. yn 6= 0) solutions yn corresponding to λn are the
eigenfunctions of the corresponding eigenvalues.

Now lets do some boundary value problems,

Ex: y′′ + y = 0; y′(0) = 1, y(L) = 0.
Solution: The characteristic polynomial gives us

r2 + 1 = 0⇒ r = ±i⇒ y = A cos t+B sin t⇒ y′ = −A sin t+B cos t.

Then our first boundary condition gives y′(0) = B = 1, and

y(L) = A cosL+ sinL = 0⇒ A = − tanL; L 6= (2k + 1)
π

2
, k = 0, ±1, ±2, . . .

However, if cosL = 0, sinL = 0, but this is clearly false because sinx 6= 0 when cosx = 0 and
vice-versa, so the BVP has no solution if L = (2k + 1)π2 .

Ex: y′′ + λy = 0; y′(0) = y′(π) = 0.
Solution:
(i) If λ > 0, let λ = µ2. Then

r = ±iµ⇒ y = A cosµt+B sinµt⇒ y′ = −Aµ sinµt+Bµ cosµt

From the first boundary condition we get y′(0) = Bµ = 0⇒ B = 0 because λ > 0. From the second
B.C. we get y′(π) = −Aµ sinµπ = 0. Since we don’t want trivial solutions if we can avoid them we
can’t have A = 0, so we require sinµπ = 0 then µ = nπ where n = ±1, ±2, . . ., so our eigenfunctions
for the corresponding eigenvalues are

yn = cosnπt; λn = n2, n = ±1, ±2, . . .

(ii) If λ < 0, let λ = −µ2. Then

r = ±µ⇒ y = c1e
µt + c2e

−µt = A coshµt+B sinhµt⇒ y′ = A sinhµt+B coshµt.

The B.C.’s give y′(0) = Bµ = 0 ⇒ B = 0 and y′(π) = A sinhµπ = 0, but sinh is only zero at zero
and µ 6= 0 since λ < 0, so we have A = 0. Then y ≡ 0, so unfortunately we get a trivial solution.
(iii) If λ = 0, y = c1x + c0 ⇒ y′ = c1, then applying the B.C.’s give y′(0) = c1 = 0 and y′(π) = 0
automatically. Then our eigenvalue and eigenfunction are

y0 = 1, λ0 = 0.

Notice I left out the constants. It is up to you if you want to include it or not.
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Ex: y′′ + y = 0; y′(0) = y(L) = 0
Solution:
(i) If λ > 0, let λ = µ2, then

y = A cosµt+B sinµt⇒ y′ = −Aµ sinµt+Bµ cosµt.

Notice how we have the same exact general solution! You do enough of these problems and you can
go straight to the solution and it’s derivative without having to do the characteristic polynomial.
Now, from the B.C.’s we get y′(0) = Bµ = 0 ⇒ B = 0 and y(L) = A cosµL = 0. So we require
µ = (2n− 1)π/2L where n = 0, ±1, ±2, . . ., then our eigenvalues and eigenfunctions are

yn = An cos
(

(2n− 1)
π

2
t
)

; λn = (2n− 1)2
π2

4
, n = 0, ±1, ±2, . . .

(ii) If λ < 0, let λ = −µ2, then

y = A coshµt+B sinhµt⇒ y′ = Aµ sinhµt+Bµ coshµt.

From the B.C.’s we get y′(0) = Bµ = 0⇒ B = 0 and y(L) = A coshµL = 0⇒ A = 0, again it’s the
trivial solution y ≡ 0. (iii) If λ = 0, y = c1x+ c0 ⇒ y′ = c1, from the B.C.’s we get y′(0) = c1 = 0
and y(L) = c0 = 0, so again we have the trivial solution y ≡ 0.


