
Math 3351 Rahman Week 12

13.5 Laplace Equation for Steady State Heat Conduction Examples

Ex: Consider the full Laplace problem with prescribed heat at the boundaries.

∂2u

∂x2
+
∂2u

∂y2
= 0; u(0, y) = g1(y), u(L, y) = g2(y); u(x, 0) = f1(x), u(x,H) = f2(x). (1)

Uh oh, we don’t have homogeneous boundary conditions anymore. So, we can’t use straight
separation. What does the principle of super position tell us? Let us first solve in one direction
and then the other direction and add the two solutions. This will allow us to make one direction
homogeneous first and then the next.

Problem 1: Let us first work in the x direction.

∂2v

∂x2
+
∂2v

∂y2
= 0; v(x, 0) = f1(x), v(x,H) = f2(x); v(0, y) = v(L, y) = 0. (2)

Let v = X(x)Y (y)⇒ X ′′Y +XY ′′ = 0⇒ X ′′/X = −Y ′′/Y . Now we have a decision to make:
which problem is Sturm–Liouville? The one with the homogeneous boundary conditions will
be, so let X ′′/X = −Y ′′/Y = −λ2.
For λ = 0 we get X = c1x+ c2, then X(0) = c2 = 0 and X(L) = Lc1 = 0. And for λ 6= 0.,

X = C1 cosλx+ C2 sinλx, Y = D1 coshλy +D2 sinhλy

Recall that with homogeneous boundary conditions sinh and cosh give trivial solutions, which
is why we write λ2 from the start, but for Y the boundary conditions are nonhomogeneous, so
sinh and cosh are fair game.
Now we solve the homogeneous part to get our eigenvalue

X(0) = C1 = 0, X(L) = C2 sinλL = 0⇒ λ =
nπ

L
.

Then we get the general solution

v(x, y) =

∞∑
n=1

An cosh
nπy

L
sin

nπx

L
+Bn sinh

nπy

L
sin

nπx

L
(3)

Plugging in our other boundary conditions gives us

v(x, 0) =

∞∑
n=1

An sin
nπx

L
= f1(x)⇒ An =

2

L

ˆ L

0

f1(x) sin
nπx

L
dx

and

v(x,H) =

∞∑
n=1

An cosh
nπH

L
sin

nπx

L
+Bn sinh

nπH

L
sin

nπx

L
= f2(x)

Notice that we can pull out a sin and consider one big constant for our Fourier Series integrals

∞∑
n=1

[
An cosh

nπH

L
+Bn sinh

nπH

L

]
sin

nπx

L
= f2(x)

⇒ An cosh
nπH

L
+Bn sinh

nπH

L
=

2

L

ˆ L

0

f2(x) sin
nπx

L
dx

⇒ Bn =
2
L

´ L
0
f2(x) sin nπx

L dx−An cosh nπH
L

sinh nπH
L

1



Then we put it all together to get

v(x, y) =

∞∑
n=1

2

L

[ˆ L

0

f1(x) sin
nπx

L
dx

]
cosh

nπy

L
sin

nπx

L

+

[
2
L

´ L
0
f2(x) sin nπx

L dx− cosh nπH
L

2
L

´ L
0
f1(x) sin nπx

L dx

sinh nπH
L

]
sinh

nπy

L
sin

nπx

L

(4)

Problem 2: Now we look at the other direction.

∂2w

∂x2
+
∂2w

∂y2
= 0; w(x, 0) = w(x,H) = 0; w(0, y) = g1(y), w(L, y) = g2(y). (5)

Let v = X(x)Y (y)⇒ X ′′Y +XY ′′ = 0⇒ X ′′/X = −Y ′′/Y . Now we have a decision to make:
which problem is Sturm–Liouville? The one with the homogeneous boundary conditions will
be, so let X ′′/X = −Y ′′/Y = λ2.
For λ = 0 we get Y = c1y + c2, then Y (0) = c2 = 0 and Y (H) = Hc1 = 0. And for λ 6= 0.,

Y = C1 cosλy + C2 sinλy, X = D1 coshλx+D2 sinhλx

Recall that with homogeneous boundary conditions sinh and cosh give trivial solutions, which
is why we write λ2 from the start, but for Y the boundary conditions are nonhomogeneous, so
sinh and cosh are fair game.
Now we solve the homogeneous part to get our eigenvalue

Y (0) = C1 = 0, Y (H) = C2 sinλH = 0⇒ λ =
nπ

H
.

Then we get the general solution

w(x, y) =

∞∑
n=1

An cosh
nπx

H
sin

nπy

H
+Bn sinh

nπx

H
sin

nπy

H
(6)

Plugging in our other boundary conditions gives us

w(0, y) =

∞∑
n=1

An sin
nπy

H
= g1(y)⇒ An =

2

H

ˆ H

0

g1(y) sin
nπy

H
dy

and

w(L, y) =

∞∑
n=1

An cosh
nπL

H
sin

nπy

H
+Bn sinh

nπL

H
sin

nπy

H
= g2(y)

Notice that we can pull out a sin and consider one big constant for our Fourier Series integrals

∞∑
n=1

[
An cosh

nπL

H
+Bn sinh

nπL

H

]
sin

nπy

H
= g2(y)

⇒ An cosh
nπL

H
+Bn sinh

nπL

H
=

2

H

ˆ H

0

g2(y) sin
nπy

H
dx

⇒ Bn =
2
H

´H
0
g2(y) sin nπy

H dy −An cosh nπL
H

sinh nπL
H

Then we put it all together to get

w(x, y) =

∞∑
n=1

2

H

[ˆ H

0

g1(y) sin
nπy

H
dy

]
cosh

nπx

H
sin

nπy

H

+

[
2
H

´H
0
g2(y) sin nπy

H dy − cosh nπL
H

2
H

´H
0
g1(y) sin nπy

H dy

sinh nπL
H

]
sinh

nπx

H
sin

nπy

H

(7)



So, the complete solution is

u(x, y) = v(x, y) + w(x, y)

=

∞∑
n=1

2

L

[ˆ L

0

f1(x) sin
nπx

L
dx

]
cosh

nπy

L
sin

nπx

L

+

[
2
L

´ L
0
f2(x) sin nπx

L dx− cosh nπH
L

2
L

´ L
0
f1(x) sin nπx

L dx

sinh nπH
L

]
sinh

nπy

L
sin

nπx

L

+
2

H

[ˆ H

0

g1(y) sin
nπy

H
dy

]
cosh

nπx

H
sin

nπy

H

+

[
2
H

´H
0
g2(y) sin nπy

H dy − cosh nπL
H

2
H

´H
0
g1(y) sin nπy

H dy

sinh nπL
H

]
sinh

nπx

H
sin

nπy

H

(8)

7) Here is a problem from the book

∂2u

∂x2
+
∂2u

∂y2
= 0;

∂u

∂x

∣∣∣∣
x=0

= u(0, y), u(π, y) = 1; u(x, 0) = u(x, π) = 0 (9)

Solution: Let u = XY ⇒ X ′′Y + XY ′′ = 0 ⇒ X ′′/X = −Y ′′/Y = λ2. Notice we choose +λ2

instead of −λ2 because our Sturm-Liouville problem is in the y direction.
This gives us the ODEs

X ′′ − λ2X = 0 Y ′′ + λ2Y = 0. (10)

For λ = 0 we get Y = c1y + c2, so Y (0) = c2 = 0 and Y (π) = c1π = 0. And for λ 6= 0

Y = C1 cosλy + C2 sinλy, X = D1 coshλx+D2 sinhλx

Then Y (0) = C1 = 0 and Y (π) = C2 sinλπ = 0 ⇒ λ = n, so Y = C2 sin(ny). The our general
solution is

u(x, y) =

∞∑
n=1

An cosh(nx) sin(ny) +Bn sinh(nx) sin(ny). (11)

Lets solve the boundary at zero first,

∂u

∂x
=

∞∑
n=1

nAn sinh(nx) sin(ny) + nBn cosh(nx) sin(ny)

∂u

∂x

∣∣∣∣
x=0

=

∞∑
n=1

nBn sin(ny)

And u(0, y) =
∑∞
n=0An sin(ny), then

∞∑
n=1

nBn sin(ny) =

∞∑
n=0

An sin(ny)⇒ nBn = An

then we plug in the other boundary condition

u(π, y) =

∞∑
n=1

nBn cosh(nπ) sin(ny) +Bn sinh(nπ) sin(ny) = 1



Then treating factoring out the sin and treating the rest as one big constant gives us
∞∑
n=1

[nBn cosh(nπ) +Bn sinh(nπ)] sin(ny) = 1

⇒ nBn cosh(nπ) +Bn sinh(nπ) =
2

π

ˆ π

0

sin(ny)dy = − 2

π

1

n
cos(ny)

∣∣∣∣π
0

=
2

nπ
[1− (−1)n]

⇒ Bn =
2
nπ [1− (−1)n]

n cosh(nπ) + sinh(nπ)

Then our full solution is

u(x, y) =

∞∑
n=1

2
nπ [1− (−1)n]

n cosh(nπ) + sinh(nπ)
[n cosh(nx) sin(ny) + sinh(nx) sin(ny)] . (12)
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