
Math 3351 Rahman Week 13

13.6 Nonhomogeneous Heat Conduction Examples

Ex: Consider the following nonhomogeneous boundary condition problem

ut = kuxx; u(0, t) = A, u(L, t) = B; u(x, 0) = f(x). (1)

We first look for the easiest solution: the equilibrium temperature. What does equilibrium mean?
We solve the problem

∂u∗
∂t

= 0⇒ ∂2u∗
∂x2

= 0; u∗(0) = A, u∗(L) = B.

So, u∗ = c1x + c2, and u∗(0) = c2 = A, u∗(L) = c1L + A = B, then our equilibrium solution is
u∗ = B−A

L x+A. Obviously, this does not solve the problem, but it does allow us to make a change of
variables that makes the B.C.’s homogeneous. Let v(x, t) = u(x, t)−u∗(x). Taking a time derivative
kills u∗ and taking two spatial derivatives also kills u∗, so we get

vt = kvxx; v(0, t) = v(L, t) = 0; v(x, 0) = f(x)− u∗ = f(x)− B −A
L

x+A (2)

We know

v(x, t) =

∞∑
n=1

An sin
nπx

L
e−k(nπ/L)

2t, (3)

then

v(x, 0) =

∞∑
n=1

An sin
nπx

L
= f(x)− B −A

L
x+A

⇒ An =
2

L

ˆ L

0

(f(x)− B −A
L

x+A) sin
nπx

L
dx

which gives us

u(x, t) =
B −A
L

x+A+

∞∑
n=1

An sin
nπx

L
e−k(nπ/L)

2t (4)

Ex: Now lets look at an example where the PDE itself is nonhomogeneous

ut = kuxx +Q; u(0, t) = A, u(L, t) = B; u(x, 0) = f(x). (5)

Then uxx = −Q/k ⇒ u∗ = −Qx2/2k + c1x+ c2. Plugging in the BCs gives us u∗(0) = c1 = A and

u∗(L) = − Q
2k
L2 + c1L+A = B ⇒ c1 =

1

L

[
B −A+

Q

2k
L2

]
⇒ u∗ = − Q

2k
x2 +

x

L

[
B −A+

Q

2k
L2

]
+A

Letting v(x, t) = u(x, t)− u∗(x) gives us our homogenized equation.
4)

ut = kuxx; u(0, t) = u0, u(1, t) = u1; u(x, 0) = f(x) (6)

Solution: uxx = 0⇒ u∗ = c1x+c2, so u∗(0) = c2 = u0 and u∗(1) = c1+u0 = u1 ⇒ c1 = u1−u0,
then our equilibrium solution is u∗ = (u1 − u0)x+ u0. Letting v = u− u∗ gives us our homogenized
equation.
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6) This problem is a bit harder and won’t come up on any exam, but I keep it here for the interested
reader.

ut = kuxx − hu; u(0, t) = 0, u(π, t) = u0; u(x, 0) = 0. (7)

Solution: To get the equilibrium solution we solve

kuxx − hu = 0⇒ u∗ = C1 cosh

(√
h

k
x

)
+ C2 sinh

(√
h

k
x

)
The first boundary gives us u∗(0)C1 = 0 and the second gives us

u∗(π) = C2 sinh

(√
h

k
π

)
= u0 ⇒ C2 =

u0

sinh

(√
h
kπ

) ⇒ u∗ = u0

sinh

(√
h
kx

)
sinh

(√
h
kπ

)
Letting v(x, t) = u(x, t)− u∗(x) gives us

vt = kvxx − hv; v(0, t) = v(π, t) = 0; v(x, 0) = −u0
sinh

(√
h
kx

)
sinh

(√
h
kπ

) (8)


