MATH 3351 RAHMAN

Week 7

12.2: FOURIER SERIES

This definition allows us to construct a space of functions out of two simple functions. Now equipped
with our new machinery we can derive a series representation that is ideal for periodic functions. We did
this in class, but here I shall just remind you of the formulas

Fourier Series.
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Now lets do some problems. While a lot of these want plotting, we did them in class, so I won’t show
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them here, but make sure you know how to plot these things
Find the Fourier Series of the function
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(a) Sketch it!
(b) We first do ag
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Notice that we always do ag separately. Then we do a,
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Then our Fourier series becomes
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Ex: Find the Fourier Series of the function f(z) = 22/2 on [-2, 2]

(a) Plot it!
(b) Again, we do ag first
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Now to do a, we need to do by parts twice, which you can do yourselves. I'll just give the final

form of the antiderivative.
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For b,, we get
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because we are integrating an odd function on a symmetric interval. Then our Fourier series is

=5+ 3 S e (UF).

15) This is a book problem.
First we find ag
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Then we find a,, via “by parts” using v = cosnz = du = —nsinnxdz and dv = e*dz = v = €”
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Then we do another by parts: u = sinnz = du = ncosnz and dv = e*dz = v = €”
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Now we notice that we have f:r e” cos nxdx on both the right and left hand sides, so we can combine

them,
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For b,, we have something similar so I will skip a bunch of steps,
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Then the Fourier Series is
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