MATH 3351 RAHMAN Week 8

12.3: EVEN AND ODD FUNCTIONS

As we saw for the last problem in the preceding section, it can be useful to know whether or not a function
is odd or even. Also, many times we will want the Fourier series of a non-periodic function. In order to
do this we need to create a periodic function that includes our non-periodic function. Instead of creating
something that is neither odd nor even if we create an even or odd function we can save a lot of time. Before
we see these techniques lets define some terms and develop the theory.

Definition 1. Consider the function f(z) such that f(—x) = f(x), then f is said to be even.
Definition 2. Consider a function f(x) such that f(—z) = —f(x), then f is said to be odd.

There are some important properties that we should keep in mind.

Properties.
e Sum/difference of two even functions is even.
Sum/difference of two odd functions is odd.
Sum/difference of an even and an odd function is neither even nor odd.
Product/quotient of two even functions is even.
Product/quotient of two odd functions is even.
Product/quotient of an even function and an odd function is odd.

If f is even, ffL flx)dz = 2f0L f(z)dz.
o If fisodd, [*, f(z)dz =0,

Now we can think of a Fourier cosine series and Fourier sine series. These can be derived straight from
the Fourier series equations so it’s best not to memorize these formulas.

Fourier cosine series. If f is an even periodic function generated on —L < x < L, then b, =0, so
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ap, = Z/o f(x) cos (T) dz

Fourier sine series. If f is an odd periodic function generated on —L < x < L, then a, = 0, so

For the next few problems we just apply the definition of odd and even functions.

(1) Odd 5) Even 6) Neither



Periodic Extensions. Suppose a function f is defined only on [0, L]. If we want to find the Fourier series

of this we need to make a periodic function that “includes” f. These are called periodic extensions and can
either be odd or even.

For these problems we did the sketching in class. Here I will do the problems that requires calculations
Ex: Find the Fourier Sine Series of f(z) = L — x on [0, L].
(a) Notice that for odd extensions our periodic function of period 2L becomes

(z) = —f(-z) -L<x<0, [-L-z —-L<z<0,
g = f(x) 0<z<L; |L-z 0<z<L;

We know that for odd extensions we’ll get a sine series so we only do the sine calculations,
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Then our Fourier sine series is
2L 1 . /nmz
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(b) Sketch the solution for L = 4.
Ex: Find the Fourier Sine and Cosine series of the following function

f(x):{ T for0<a <1,

0 forl<z<?2

(a) Sketch the even and odd extensions of the function.
(b) For the cosine series we have
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and
apn, = E/OL f(z)cos (%) dx = /Olmcos (n;rm) dx = i—isin (n;rx) + (ni)Q oS (n;m:)
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Notice that for this problem we can’t simplify the indices in any reasonable manner, so we leave
it as is. So the Fourier cosine series is
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Now, for the sine series we have
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Then our Fourier series is




