
Math 3351 Rahman Week 9

12.5 Boundary Value Problems

We are used to initial value problems where we are given initial data. What if we are given boundary
data instead? There are many applications where things are happening for a long period of time and we
don’t know what happened in the beginning, but we do know something about the boundary. The usual
problems are solved in a similar fashion to Initial Value Problems. We do however have a bit more theory.

Definition 1. The boundary values (for a second order ODE) y(a), y(b), y′(a), and/or y′(b) are said to be
homogeneous if any two of the above boundary data are zero.

We also have eigenvalue problems for BVPs. Recall that for matrices the eigenvalue problems were of the
form Ax = λx, where we solve for the “eigenvalue”, λ. For BVPs of a second order ODE, we consider our
linear operator to be L = d2/dx2 (for matrices the linear operator is the matrix A). So we wish to solve the
problem Ly = λy; i.e. y′′ + λy = 0. Here the y′ns corresponding to λ′ns are called eigenfunctions (similar to
eigenvectors in the matrix case). We notice that eigenvalue problems are only for homogeneous boundary
data.

Definition 2. The boundary value problem

y′′ + λy = 0; (with homogeneous boundary conditions), (1)

is called an eigenvalue problem. And the nontrivial (i.e. yn 6= 0) solutions yn corresponding to λn are the
eigenfunctions of the corresponding eigenvalues.

Now lets do some boundary value problems,

Ex: y′′ + y = 0; y′(0) = 1, y(L) = 0.
Solution: The characteristic polynomial gives us

r2 + 1 = 0⇒ r = ±i⇒ y = A cos t+B sin t⇒ y′ = −A sin t+B cos t.

Then our first boundary condition gives y′(0) = B = 1, and

y(L) = A cosL+ sinL = 0⇒ A = − tanL; L 6= (2k + 1)
π

2
, k = 0, ±1, ±2, . . .

However, if cosL = 0, sinL = 0, but this is clearly false because sinx 6= 0 when cosx = 0 and
vice-versa, so the BVP has no solution if L = (2k + 1)π2 .
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Ex: y′′ + λy = 0; y′(0) = y′(π) = 0.
Solution:
(i) If λ > 0, let λ = µ2. Then

r = ±iµ⇒ y = A cosµt+B sinµt⇒ y′ = −Aµ sinµt+Bµ cosµt

From the first boundary condition we get y′(0) = Bµ = 0⇒ B = 0 because λ > 0. From the second
B.C. we get y′(π) = −Aµ sinµπ = 0. Since we don’t want trivial solutions if we can avoid them we
can’t have A = 0, so we require sinµπ = 0 then µ = nπ where n = 1, 2, . . ., so our eigenfunctions
for the corresponding eigenvalues are

yn = cosnπt; λn = n2, n = 1, 2, . . .

(ii) If λ < 0, let λ = −µ2. Then

r = ±µ⇒ y = c1e
µt + c2e

−µt = A coshµt+B sinhµt⇒ y′ = A sinhµt+B coshµt.

The B.C.’s give y′(0) = Bµ = 0 ⇒ B = 0 and y′(π) = A sinhµπ = 0, but sinh is only zero at zero
and µ 6= 0 since λ < 0, so we have A = 0. Then y ≡ 0, so unfortunately we get a trivial solution.
(iii) If λ = 0, y = c1x + c0 ⇒ y′ = c1, then applying the B.C.’s give y′(0) = c1 = 0 and y′(π) = 0
automatically. Then our eigenvalue and eigenfunction are

y0 = 1, λ0 = 0.

Notice I left out the constants. It is up to you if you want to include it or not.
Complete Solution:

y = c0 +

∞∑
n=1

An cosnπt

Ex: y′′ + λy = 0; y′(0) = y(L) = 0
Solution:
(i) If λ > 0, let λ = µ2, then

y = A cosµt+B sinµt⇒ y′ = −Aµ sinµt+Bµ cosµt.

Notice how we have the same exact general solution! You do enough of these problems and you can
go straight to the solution and it’s derivative without having to do the characteristic polynomial.
Now, from the B.C.’s we get y′(0) = Bµ = 0 ⇒ B = 0 and y(L) = A cosµL = 0. So we require
µ = (2n− 1)π/2L where n = 1, 2, 3, . . ., then our eigenvalues and eigenfunctions are

yn = An cos
(

(2n− 1)
π

2
t
)

; λn = (2n− 1)2π
2

4
, n = 1, 2, 3, . . .

(ii) If λ < 0, let λ = −µ2, then

y = A coshµt+B sinhµt⇒ y′ = Aµ sinhµt+Bµ coshµt.

From the B.C.’s we get y′(0) = Bµ = 0⇒ B = 0 and y(L) = A coshµL = 0⇒ A = 0, again it’s the
trivial solution y ≡ 0.
(iii) If λ = 0, y = c1x+ c0 ⇒ y′ = c1, from the B.C.’s we get y′(0) = c1 = 0 and y(L) = c0 = 0, so
again we have the trivial solution y ≡ 0.

Complete Solution:

y =

∞∑
n=1

An cos
(

(2n− 1)
π

2
t
)



13.2 The Three Classical PDEs

The Heat Equation. Consider heat conduction in some bulk space V with a boundary ∂V . Also consider
an infinitesimal space in that bulk called dV . Let u(x, y, z, t) represent the temperature in V at any time t.
Let E = cρu where c is the specific heat and ρ is the mass density of the bulk, be the total energy in dV .

There are some fundamental laws that will lead us to the heat equation:

Fourier heat conduction laws:

(1) If the temperature in a region is constant, there is no heat transfer in that region.
(2) Heat always flows from hot to cold.
(3) The greater the difference between temperatures at two points the faster the flow of heat from

one point to the other.
(4) The flow of heat is material dependent.

All these laws can be summarized into one equation

φ(x, y, z, t) = −K0∇u(x, y, z, t) (2)

Now we can form a word equation:

(Rate of change of heat) = (Heat flowing into dV per unit time) + (Heat generated in dV per unit time)
(3)

The first statement is the rate of change of the total energy E. The second is the flux at ∂V in the normal
direction. The third is additional heat being generated in dV . For the third statement lets called the
additional heat Q. This gives us the equation

∂

∂t

˚
V

cρu dV = −
‹
∂V

φ · ndS +

˚
V

QdV (4)

And using divergence theorem we get

‹
∂V

φ · ndS =

˚
V

∇ · φdV =

˚
V

∇ · (−K0∇u) dV = K0

˚
V

∇2u dV

therefore, the equation becomes

∂

∂t

˚
V

cρu dV =

˚
V

cρ
∂

∂t
u dV = K0

˚
V

∇2u dV +

˚
V

QdV ⇒ cρ
∂u

∂t
= K0∇2u+Q. (5)

If we consider the case Q = 0; i.e., no external heat being generated, and if we divide through by cρ, then
we get the simplest form of the heat equation

∂u

∂t
= K∇2u (6)

where K is called the thermal diffusivity. In 1-D this is,

∂u

∂t
= K

∂2u

∂x2
(7)



The Wave Equation. Here we will only derive the 1-D version, but keeping in mind we can extend the
notion of a derivative to higher dimensions with the ∇ operator.

Consider a vibrating string. Let u be the vertical displacement. The slop of the string at any horizontal
position x is tan θ(x) = ∂u/∂x where θ is the angle from the horizontal.

If we ignore any horizontal motion of the atoms we can directly use Newton’s laws for the vertical motion.
The mass of any small segment of string is ρ∆x and the acceleration is ∂2u/∂t2. The total tensile force on
the string at x is F (x, t) and at ∆x is F (x+ ∆x, t). We can “pick out” the vertical component of the force
by multiplying it by sine of the angle. Lets also consider an external force on the string Q. Then we get the
equation

ρ∆x
∂2u

∂t2
= F (x+ ∆x, t) sin(θ(x+ ∆x, t))− F (x, t) sin(θ(x, t)) + ρ∆xQ(x) (8)

Dividing through by ∆x and taking the limit gives us

ρ
∂2u

∂t2
= lim

∆x→0

1

∆x
(F (x+ ∆x, t) sin(θ(x+ ∆x, t))− F (x, t) sin(θ(x, t)))+ρQ(x) =

∂

∂x
(F (x, t) sin(θ(x, t)))+ρQ(x)

If our angle of deflection isn’t huge, tan θ = sin θ/ cos θ ≈ sin θ, so we can approximate sine by sin θ = ∂u/∂x.
Let us also assume a constant tensile force through out the string; i.e., F = T0. Then our equation simplifies
to

ρ
∂2u

∂t2
=

∂

∂x

(
T0
∂u

∂x

)
+ ρQ⇒ ∂2u

∂t2
=
T0

ρ

∂2u

∂x2
+Q (9)

Here T0/ρ = c2, where c is the speed of propagation of the wave. Now, if the only external force is gravity,
it is negligible compared to T0, so Q ≈ 0. This gives us the simplest wave equation

∂2u

∂t2
= c2

∂2u

∂x2
(10)

This can be extended to the higher orders using the ∇ operator

∂2u

∂t2
= c2∇2u (11)

Laplace’s Equation. We will often want to see what happens for steady state problems or when the time
derivatives of a PDE are zero. This gives us Laplace’s Equation

∇2u = 0 (12)

Boundary and Initial Condition. Consider a boundary x = b, then we have some usual conditions

Dirichlet conditions: u(b, t) = B [Heat: prescribed, Wave: clamped]

Neumann conditions: ux(b, t) = B [Heat: flux, Wave: sloped string]

We may also have a combination of these conditions. It should be noted that for the heat equation because
we have one time derivative, it will have one initial condition. For the wave equation since we take two time
derivatives we will have two initial conditions: one for the initial profile and the other for the initial velocity.



Examples.

6) Here we need Newton’s law of cooling: The rate of change of temperature at a point is proportional
to the difference between that and the surrounding temperature; i.e., ∂T/∂t = −K(T − Ta), where
Ta is the ambient temperature. Since the heat transfer is not happening in the domain, but rather
lateral to the domain we treat this as external heat generation. The problem also has insulated
boundaries (ux = 0 at the boundaries), and the initial temperature is a constant 100 C. So we get

∂u

∂t
= D

∂2u

∂x2
−K(u− 50);

∂u

∂x

∣∣∣∣
x=0

=
∂u

∂x

∣∣∣∣
x=L

= 0;u(x, 0) = 100.

10) They say we have an external force proportional to the position, so Q = kx, and the problem tells
us that the string is secured at the ends (u = 0 at the boundaries). For the initial condition it tells
us that it is at rest (ut(x, 0) = 0) on the x-axis (u(x, 0) = 0). So we have

∂2u

∂t2
= c2

∂2u

∂x2
+ kx;u(0, t) = u(L, t) = 0;u(x, 0) =

∂u

∂t

∣∣∣∣
t=0

= 0.

12) Here the one complication is the boundary on the right. We need a way to express that it is 100C
only after a certain value of y. We do this using the Heaviside function

∂2u

∂x2
+
∂2u

∂y2
= 0;u(0, y) = e−y, u(x, 0) = f(x), u(π, y) = 100 (1−H1(y)) .
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